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turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which
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advanced measurements are possible and (2) combustion chambers of existing engines operated in
realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda-
mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify
potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES
computations. LES in real engines illustrate the potential of the approach in the context of industrial

Turbulent combustion burners but are more difficult to validate due to the limited set of available measurements. Usual

Gas turbine

approaches for turbulence and combustion sub-grid models including chemistry modeling are first
recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on
the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues
linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at
inlet and outlet, annular chambers.... Examples are provided for mean flow predictions (velocity,
temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil-
ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine
combustor designs.
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1. Introduction

Aeronautical turbulent reacting flows involve a wide range of
scales and complexities caused by the specific shapes of engines
and the combustion regimes encountered in these devices. Because
of the space and weight constraints, designers need to develop
burners which ensure maximum efficiency and compactness. Over
the years, manufacturers have gained significant experience and
existing designs largely rely on flow recirculations to increase
mixing and flow-though times despite a reduced size combustion
chamber. In parallel, pollutant emissions and regulations have
induced changes of technology with the emergence of partially
premixed and premixed burners. Multi-point fuel injection systems
and staging are also being implemented as potential solutions to
the new regulations. All these concepts increase the complexity of
the flow and lead to specific flow dynamics and combustion
responses. Although these designs are being routinely evaluated

by Computational Fluid Dynamics (CFD), most present modeling
strategies rely on Reynolds Average Navier-Stokes (RANS)
approaches developed for mean stationary flows [1—10]. Such
models benefit from extensive research and developments from
the scientific community and have been successfully calibrated on
simple fundamental configurations. However, the complexity of
flows in modern gas turbines adds multiple constraints on RANS
and limits their precision, Fig. 1. Alternative numerical solutions are
thus needed to further increase the share of CFD and decrease the
number of real engine tests and design iterations.

CFD alternatives to RANS for aeronautical gas turbine applica-
tions must justify the increase in development, maintenance and
computer costs. These new tools need also to be compatible with
existing industrial knowledge and conception rules. The use of new
CFD approaches and their future in the design chain is still unclear.
It will probably depend on the computing power available to
engineers as well as their ability to master and analyze ever more

a | RANS: Temporally/ensemble averaged field
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I DNS: Time and space evolving field

- No modeling
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Fig. 1. Schematic representation of the three numerical methods used to simulate turbulent reacting flows: (a) RANS provide access to a temporally/ensemble averaged field
representing the flow field in complex systems (extracted from [319]); (b) LES give access to a temporally and spatially evolving set of fields representative of the spatially filtered
governing system of equations (extracted from [320,360]) and (c) DNS provide the exact spatially and temporally evolving field obtained by directly solving the governing equations

(extracted from [361]).
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