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The cognitive mechanisms by which an organism comes to employ an optimal response to a situation are
of great interest in behavioural ecology, but the basis and form of these mechanisms have been little
studied. One approach employs learning rules, which are mathematical expressions that calculate the
value of the behavioural alternatives in an organism’s repertoire based on past and present rewards to
those alternatives. Previous work on these learning rules has examined the performance of rules to
determine whether they can achieve evolutionarily stable optimums. However, not only has this work
tested rules in isolation, but the parameter values chosen to test them have been few and chosen
arbitrarily. Moreover, the environments in which the rules have been evaluated are unchanging,
a condition that does not favour learning. In this study we extend simulation work on three learning
rules (relative payoff sum, linear operator and perfect memory). We use a genetic algorithm to both
estimate the optimal parameter values for each rule and place the rules in competition with each other in
a foraging game with a changing environment. Our results confirm earlier findings that the relative
payoff sum is an ES learning rule. However, the results go much further because they show that the form
of the learning rule that qualifies as evolutionarily stable combines near inextinguishable producing with
highly responsive scrounging. The relative payoff sum may provide a single rule that can account for the
way an animal’s ecology can come to affect its specific set of learning sensitivities.
� 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

In the course of their daily activities many animals are faced
with choices. These may concern habitat selection, the exploitation
of food patches, selecting prey to attack or mates to court or even
opponents with whom to compete. The expected fitness return
from such decisions depends on the information that is available to
the animal and how it is used to decide on a course of action. When
the value of alternatives is uncertain and changes over time,
animals collect information or sample before deciding on a course
of action. Selection is expected to have favoured individuals capable
of acquiring information and acting appropriately (Stephens 1991).
Models of optimal sampling under mostly nonsocial circumstances
have been proposed and supported experimentally (Shettleworth
et al. 1988).

In social situations sampling can become more difficult because
the values of alternative courses of action not only depend on how
the environment changes over time but also on the decisions of
others (Giraldeau & Caraco 2000). In such cases, sampling is best
analysed as an evolutionary game (Maynard Smith 1982). For
example, an animal foraging for two prey types may face

uncertainty concerning the abundance of either prey type. But if it
forages in the company of others, it must also contend with the
changing abundances that will be induced by the prey selection
decisions of its competitors. Determining which prey selection
policy provides the greater payoff will require some sampling and
adjustment of decision as conditions change.

The rule that governs an animal’s sampling and its influence on
decisions in the context of games has been labelled a learning rule
(Harley 1981). Learning rules are mathematical descriptions of how
animals assign values to behavioural alternatives based on current
and past information about their payoffs obtained by sampling.
Maynard Smith (1982) and Harley (1981) argued that natural
selection would favour learning rules that led the group most
quickly to the expected evolutionarily stable strategy: the ESS
(Maynard Smith 1982). They defined an evolutionarily stable (ES)
learning rule (Harley 1981) as a rule which, once fixed in a group,
could not be invaded by any mutant rule. An ES learning rule, if one
exists, would prove an extremely powerful tool for predicting the
strategic use of alternative behaviour by animals engaged in games
such as cooperation, fighting, habitat choice and resource exploi-
tation (Dugatkin & Reeve 1997).

Maynard Smith (1982) and Harley (1981) proposed that one
learning rule, the relative payoff sum (RPS), was a strong contender
for the title of an ES learning rule. Not too surprisingly, therefore,
a considerable amount of research has been focused on testing the

* Correspondence: S. Hamblin, Departement des Science Biologiques, Université
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evolutionary stability of the RPS and other rules; some theoretical
(Harley 1983, 1987; Hines & Bishop 1983; Houston 1983; Houston &
Sumida 1987; Tracy & Seaman 1995), some empirical (e.g. Milinski
1984; Kacelnik & Krebs 1985; Amano et al. 2006), and some using
computer simulation (e.g. Regelmann 1984; Beauchamp 2000,
2004; Beauchamp & Fernández-Juricic 2004; Beggs 2005; Amano
et al. 2006; Spataro & Bernstein 2007). In the course of this
research, three rules have been proposed as serious contenders to
the title of ES rule: the relative payoff sum (RPS; Harley 1981), the
linear operator (LOP; Bush & Mosteller 1955), and perfect memory
(PM; Houston & Sumida 1987), the mathematical details of which
are discussed in the Methods.

Despite the considerable research effort devoted to ES learning
rules, none has emerged as convincingly evolutionarily stable.
Strong conclusions have been hampered by a combination of three
major problems: first, few studies have pitted all rules against all
others; second, all studies have used rules fitted with just a few
parameter values, apparently chosen arbitrarily; third, almost all
rules have been tested in unchanging environments where learning
is of little value.

One of the most complete investigations into the question of ES
learning rules has been conducted by Beauchamp (2000). To our
knowledge, this is the only study that has attempted to study ES
properties of learning rules in competition against each other. To do
so, Beauchamp used an agent-based model but tested rules using
only three parameter values that were apparently chosen arbi-
trarily. Harley’s (1981) original concern of whether a learning rule
might lead a population to adopt an uninvadable strategy through
behavioural means cannot be addressed without determining the
parameters that drive these learning rules. To date, all studies of the
ES properties of learning rules have neglected the importance of
the exact parameters used when testing the rule. Given the possible
set of parameter values for these rules, only a miniscule portion of
the available parameter space has been explored. If we are to
conclude about a rule’s evolutionary stability, it is imperative that
we do so knowing that a rule’s success is not just due to its being
fitted with better performing parameters. The only way to do this is
by using each rule’s optimal set of parameters.

How do we find optimal parameter values for these rules to
test them with? An analytical solution to these equations is out of
reach, and the set of possible parameter values (the parameter
space) is too large to feasibly conduct an exhaustive search. To
solve this problem, we turn to a heuristic search technique known
as a genetic algorithm. Genetic algorithms mimic the techniques of
natural selection (differential reproduction, mutation and recom-
bination) to find solutions to optimization problems (Sumida et al.
1990; Huse et al. 1999). Here, we use the genetic algorithm to
evolve candidate rules with different parameter values, selecting
those that perform best in the social foraging task to reproduce,
and using mutation and recombination to sweep the parameter
space. One of the virtues of the genetic algorithm approach to
modelling is that the evolution of traits can be made explicit
(Hamblin & Hurd 2007; Ruxton & Beauchamp 2008), and by
linking it to a model with an explicit description of a behavioural
mechanism, insights into the interaction between the two may be
gained (reviewed in Seth 2007). A cautionary note is required
here, though, since the language of the field of evolutionary
computation borrows heavily from biology while the comparisons
between the two are not always so clear. It is important not to take
the jargon of genetic algorithms too literally, as the details of the
genetic algorithm may seem odd, biologically; parameters and
methods for genetic algorithms are usually chosen for search
power, not biological realism (for a discussion on the ways of
conceptualizing genetic algorithms in behavioural ecology, see
Ruxton & Beauchamp 2008).

Beauchamp tested the properties of these rules as agents were
engaged in playing one of two foraging games, the producer–
scrounger game (Barnard & Sibly 1981) or an ideal free distribution
game (Fretwell & Lucas 1969; Sutherland 1983). Given that Beau-
champ’s results were similar whether the agents were engaged in
a PS or an IFD game, we chose to have our agents play only a PS
game. Although most experimental work on PS games concerns
foraging in small flocks of birds (Giraldeau & Caraco 2000), it is
important to realize that the structure of the PS game is more
general and applies widely to any case where the investment of
some individuals is exploited by others (Barnard 1984), much like
the caller and silent satellite male strategies of many toads (e.g.
Howard 1978) or the digging versus entering strategies of digger
wasps (Brockmann et al. 1979).

As in all investigations of the ES property of learning rules,
Beauchamp’s (2000) study is set in an unchanging environment.
This is problematical because learning may be of most value when
the environment is at an intermediate level of variability (Stephens
1991; Kerr & Feldman 2003). So testing a learning rule under
conditions where learning is of little value may not have provided
the rules with conditions that allowed them to perform efficiently.
To provide rules with a variety of conditions, we focus on changing
two variables: group size and environmental variability. Population
size is relevant for both biological and technical reasons. Techni-
cally, genetic algorithms are more powerful with larger group sizes,
since a large group (population) size means more candidate rules to
select among. Biologically, we investigate the effect of group size to
determine how the use of learning may change in large or small
groups. With regard to environmental variability, we will investi-
gate rule performance as environmental features such as patch
density and food items per patch.

Our first objective is to go beyond the use of arbitrary parame-
ters when testing rules. To do this, we determine the optimal
parameters for each rule using a genetic algorithm. As this is
occurring, the rules simultaneously compete with each other in the
genetic algorithm, allowing us to form a clearer picture of the
evolutionary stability of the rules, which is our second objective
(Houston & Sumida 1987). Third, we wish to establish the evolu-
tionary stability of rules in environments that vary. Finally, we hope
to determine whether the rules predict similar or distinct group
structures; that is, whether agents will end up specializing on one
or the other alternative or instead become generalist individuals
that switch from one to the other alternative.

METHODS

The Model

We use an agent-based foraging model that builds on the model
described in Beauchamp (2000) and extends it by using a genetic
algorithm to optimize the rule type and rule parameter choices of
the agents in the model.

The Learning Rules

Each rule has its own peculiarities. The RPS has two compo-
nents: one concerns the estimated value of the alternatives, the
other is a decision based on these values.

Relative payoff sum ðRPSÞ:
SiðtÞ ¼ x� Siðt � 1Þ þ ð1� xÞ � nþ PiðtÞ

where Si(t) is the value placed on behavioural alternative i at time t,
x is the memory factor that determines how highly the past is
valued, ri is the residual, the cutoff below which the valuation of the
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