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a b s t r a c t

Complex system engineering design optimization based on simulation is a very time-consuming, even
computationally prohibitive process. To relieve the computational burden, metamodels are commonly
used to replace the computation-intensive simulations. In this paper, an active learning variable fidelity
(VF) metamodeling approach (AL-VFM) is proposed for the purpose of integrating information from both
low-fidelity (LF) and high-fidelity (HF) models. In AL-VFM, Kriging metamodel is adopted to map the dif-
ference between the HF and LF models aiming to approach the HF model on the entire domain. Besides, a
general active learning strategy is introduced in AL-VFM to make full use of the already-acquired infor-
mation to guide the VF metamodeling. The already-acquired information represents the location of
regions where the differences between the HF and LF models are multi-model, non-smooth and have
abrupt changes. Several numerical and engineering cases with different degrees of difficulty verify the
applicability of the proposed VF metamodeling approach.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Computational simulation models have been widely used to
explore design alternatives during preliminary design phase. In
spite of sustained growths in computer capability and speed, the
enormous computational expensive associated with high fidelity
engineering simulation codes still makes it impractical to rely
exclusively on high fidelity models for design and optimization.
Just taking Ford Motor Company as an example, it was reported
that it takes the company about 36–160 h to run one crash simula-
tion for a full passenger car [1]. Indeed, it is still impractical to
directly use these simulations with an optimizer to evaluate a lot
of design alternatives when exploring the design space for an opti-
mum [2,3]. This limitation can be addressed by adopting global
metamodel (or surrogate), which can mimic the original system
at a considerably reduced computational cost [4,5]. There are a
lot of commonly used metamodels, such as Polynomial Response
Surface (PRS) models [6], Kriging models [7], Artificial Neural Net-
works (ANN) models [8,9], Radial Basis Function (RBF) models [10],
and Support Vector Regression (SVR) models [11]. A more detailed
overview on various metamodeling techniques can refer to [12]. It
is important to point out that the quality of the metamodels has a

profound impact on the computational cost and convergence
characteristics of the metamodel-based design optimization. The
quality of the metamodels directly depends on the sample points
at which the computer simulation or physical experiments are
conducted. Generally, more sample points offer more information
of the system, however, at a higher cost [13]. Less sample points
require lower expense, while leading to inaccurate metamodels
even distorted metamodels. Hence, conflict between high accuracy
and low expense seems to be inevitable in building metamodels.

To ease this problem, variable-fidelity (VF) metamodeling
approaches based on the interaction of high-fidelity (HF) and
low-fidelity (LF) models have been widespread concerned [4,14].
A HF model is one that is able to accurately describing the physical
features of the system but with an unaffordable computational
expense, e.g., physical experiment, finite element, computational
fluid dynamics, etc. A LF model is one that is able to reflect the
most prominent characteristics of the system at a considerably less
computationally demanding, e.g., numerical empirical formula.
Commonly used VF metamodeling approaches are scaling meth-
ods, which tune the LF model according to the response values of
the HF model. These scaling methods can be divided into two dis-
tinct types: local VF metamodeling approaches and global VF
metamodeling approaches. In local VF metamodeling approaches,
the scaling function is approximated using local metamodels,
e.g., linear regression [15], first/s Taylor series [16–18]. The local
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VF metamodeling approaches are easy to implement and can
achieve a relative high accuracy within an appropriate trust region
size, e.g., Chang et al. [15] used a multiplicative scaling approach to
correct the response values of LF model to match the HF model. An
application of this metamodel was tested on a wing-box model of a
high-speed civil transport. Alexandrov et al. [16,17] integrated
first-order additive and multiplicative scaling modeling method
with the convergent techniques of nonlinear programming in engi-
neering analysis and design; and have successfully applied this
method to a 3-D aerodynamic wing optimization problem and a
2-D airfoil optimization problem, achieving a threefold savings
and twofold savings in computing effort, respectively. The main
shortcoming of these approaches is that they are only suitable
for local optimization problems [19–21]. While in global VF meta-
modeling approaches, the scaling function is approximated using
global metamodels, e.g., Qian et al. [22] proposed a Bayesian
approach to integrate LF model and HF simulation values for engi-
neering design. Xiong et al. [23] put forward a model scaling tech-
nique based on Bayesian–Gaussian process to integrate the
information from both LF and HF models. Han et al. [24] put for-
ward a gradient-enhanced Kriging to form a generalized corrected
based method, which was tested on the design of airfoil. Zheng
et al. [25] proposed a hybrid VF global metamodeling method,
which a RBF base model and a Kriging linear correction were com-
bined to make full use of LF and HF information. Tyan et al. [26]
adopted RBF network as the scaling function to replace Taylor ser-
ies, making the global VFM approach more efficient for high-
dimensional design problems. Compared with the local VF meta-
modeling approach, the most obvious advantage of these global
VF metamodeling approaches is that they are able to cope with
multiple optimum situations sophisticatedly on the entire domain.
Until now, more researches have been carried out to develop new
types of LF model tuning that will further improve the accuracy
and reduce the computational effort of VF metamodeling, but little
attention has been paid to utilize the already-acquired information
of difference characteristics between the HF and LF models. In
other words, how to appropriately arrange and make full use of
the sample points for HF models to run simulations according to
the already-acquired difference information between the HF and
LF models during the tuning process should be drawn more atten-
tion, especially when the computational cost is limited.

Instead of developing novel types of LF model tuning as in the
past, this paper proposes an active learning VF metamodeling
approach (AL-VFM), in which the one-shot VF metamodeling pro-
cess is transformed into an active learning iterative process. The
goal of the active learning process is to exploit the already-
acquired information from the previous VF data to guide the VF
metamodeling. The already-acquired information represents the
location of regions where the differences between the HF and LF
models are multi-model, non-smooth and have abrupt changes.
The approximation performance of AL-VFM approach is demon-
strated using some mathematical and engineering cases, and a
rough comparison of AL-VFM approach and other metamodeling
techniques are made. It is expected that more accurate metamod-
els can be developed with AL-VFM for the same number of simula-
tion evaluations.

The rest of this paper is organized as follows. In Section 2, the
background and several definitions used in this work are put for-
ward. Details of the proposed approach are presented in Section 3.
Numerical cases and comparison results are provided in Section 4.
Two engineering examples are provided in Section 5 to demon-
strate that the proposed VF modeling approach is applicable to
complex problems. Conclusions and future work are discussed in
Section 6.

2. Background and definitions

In this section, we provide the background and related defini-
tions to the proposed approach, including: Kriging metamodeling,
VF metamodeling, difference unstable region (DUR).

2.1. Kriging metamodeling

Kriging is an interpolative Bayesian metamodeling technique. It
was originated from geo-statistical and used by Sacks et al. [27] for
predicting the unknown response at sample points. Kriging treats
the observed response as a combination of a global model and local
deviations:

f̂ ðxÞ ¼ pðxÞ þ ZðxÞ ð1Þ
where pðxÞ is a known polynomial function, ZðxÞ is the realization of
a stochastic process with mean zero and nonzero covariance. The
nonzero covariance of ZðxÞ is given by:

COV Z xið Þ; Z xj
� �� � ¼ r2R R xi; xj

� �� � ð2Þ
where R is the correlation matrix. Rðxi; xjÞ is the correlation function
between two sample points xi and xj. When the Gaussian
correlation function is employed, it can be calculated by:

RðhÞ ¼ exp �
XK
k¼1

hk xki � xkj
� �2

" #
ð3Þ

where K demotes the dimensions of design space and hk are the
unknown correlation parameters to be determined. Because Kriging
is an interpolative Bayesian metamodeling, the model will have no
mean square error (MSE) at all sample points. If the MSE is mini-

mized, the predictor bf xð Þ for unobserved points is expressed as:

f̂ ðxÞ ¼ b̂þ rTðxÞR�1 f � b̂p
� �

ð4Þ

where f is the column vector of length m that contains the sample
data of the responses, and p is a column vector of length m that is
filled with ones when pðxÞ is taken as a constant. rTðxÞ is the corre-
lation vector between an unobserved point x and the sample points.

rTðxÞ ¼ R x; x1
� �

;R x; x2
� �

; . . . ;R x; xN
� �� �T ð5Þ

The scalar bb is estimated using the following equation:

b̂ ¼ pTR�1p
� ��1

pTR�1f ð6Þ

The estimated variance of the output model can be calculated
by:

r̂2 ¼ ðf � b̂pÞTR�1ðf � b̂pÞ
N

ð7Þ

The unknown correlation parameters hk are founded using max-
imum likelihood estimation can be formulated as [7]:

max UðHÞ ¼ � N lnðr̂2Þ þ ln Rj j� �
2

s:t: H > 0
ð8Þ

whereH denotes the vector of hk, and both r̂ and R are the function
of H.

2.2. VF metamodeling

The VF metamodeling technology is based on the assumption
that, apart from a HF model that is sufficiently accurate but
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