Advanced Engineering Informatics 30 (2016) 233-243

Contents lists available at ScienceDirect
'ADVANCED; ENGINEERING,

INFORMATICS

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

An efficient algorithm to mine high average-utility itemsets

@ CrossMark

Jerry Chun-Wei Lin**, Ting Li?, Philippe Fournier-Viger ", Tzung-Pei Hong ““, Justin Zhan ¢,
Miroslav Voznak '

4School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, China
b School of Natural Sciences and Humanities, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, China
€ Department of Computer Science and Engineering, National University of Kaohsiung, Kaohsiung, Taiwan

d Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan

€ Department of Computer Science, University of Nevada, Las Vegas, USA

fDepartment of Telecommunications, VSB-Technical University of Ostrava, Czech Republic

ARTICLE INFO ABSTRACT

Article history:

Received 24 December 2015

Received in revised form 26 March 2016
Accepted 3 April 2016

Available online 15 April 2016

With the ever increasing number of applications of data mining, high-utility itemset mining (HUIM) has
become a critical issue in recent decades. In traditional HUIM, the utility of an itemset is defined as the
sum of the utilities of its items, in transactions where it appears. An important problem with this defini-
tion is that it does not take itemset length into account. Because the utility of larger itemset is generally
greater than the utility of smaller itemset, traditional HUIM algorithms tend to be biased toward finding a
set of large itemsets. Thus, this definition is not a fair measurement of utility. To provide a better assess-
ment of each itemset’s utility, the task of high average-utility itemset mining (HAUIM) was proposed. It
introduces the average utility measure, which considers both the length of itemsets and their utilities,
and is thus more appropriate in real-world situations. Several algorithms have been designed for this
task. They can be generally categorized as either level-wise or pattern-growth approaches. Both of them
require, however, the amount of computation to find the actual high average-utility itemsets (HAUIs). In
this paper, we present an efficient average-utility (AU)-list structure to discover the HAUIs more
efficiently. A depth-first search algorithm named HAUI-Miner is proposed to explore the search space
without candidate generation, and an efficient pruning strategy is developed to reduce the search space
and speed up the mining process. Extensive experiments are conducted to compare the performance of
HAUI-Miner with the state-of-the-art HAUIM algorithms in terms of runtime, number of determining
nodes, memory usage and scalability.

Keywords:

High average-utility itemsets
List structure

Data mining

HAUIM

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Mining frequent itemsets (FIs) or association rules (ARs) in
transactional databases is a fundamental task in knowledge discov-
ery in databases (KDD) [2,3,6]. Many algorithms have been
designed to mine FIs or ARs. The most common ways of deriving
FIs or ARs from a database are to use a level-wise [3] or a
pattern-growth approach [8,14]. Apriori [3] is the first algorithm
to mine Fls in a level-wise manner. It relies on a minimum support
threshold in the first phase to mine FlIs, and then use the discov-
ered Fls in the second phase to derive ARs satisfying a minimum
confidence threshold. The pattern-growth approach was intro-

* Corresponding author.
E-mail addresses: jerrylin@ieee.org (J.C.-W. Lin), tingli@ikelab.net (T. Li),
philfv@hitsz.edu.cn (P. Fournier-Viger), tphong@nuk.edu.tw (T.-P. Hong), justin.
zhan@unlv.edu (J. Zhan), miroslav.voznak@vsb.cz (M. Voznak).

http://dx.doi.org/10.1016/j.aei.2016.04.002
1474-0346/© 2016 Elsevier Ltd. All rights reserved.

duced by Han et al. [8] for mining FIs without candidate genera-
tion. FP-growth initially builds an FP-tree structure using
frequent 1-itemsets. Then, during the mining process, conditional
FP-trees are recursively generated, and each tree contains a
designed index table (Header_Table) for mining the FIs.
Traditional frequent itemset mining (FIM) and association rule
mining (ARM) algorithms only consider occurrence frequencies of
items in binary databases. Other important factors such as quanti-
ties, profits, and weights of items are not taken into account by tra-
ditional FIM and ARM algorithms. Another problem is that FIs and
ARs found a transaction database may only contribute a small por-
tion of the overall profit generated by the sale of items, and infre-
quent itemsets may contribute a large amount of the profit. For
example, the sale of diamonds may be less frequent than that of
clothing or shoes in a shopping mall, but diamonds generally con-
tribute a much higher profit per unit sold. It is thus obvious that
only considering the occurrence frequency is insufficient to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2016.04.002&domain=pdf
http://dx.doi.org/10.1016/j.aei.2016.04.002
mailto:jerrylin@ieee.org
mailto:tingli@ikelab.net
mailto:philfv@hitsz.edu.cn
mailto:tphong@nuk.edu.tw
mailto:justin.zhan@unlv.edu
mailto:justin.zhan@unlv.edu
mailto:miroslav.voznak@vsb.cz
http://dx.doi.org/10.1016/j.aei.2016.04.002
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

234 J.C.-W. Lin et al./Advanced Engineering Informatics 30 (2016) 233-243

identify highly profitable itemsets or itemsets that are generally
more important to the user. Thus, high-utility itemset mining
(HUIM) [11-13,22] has emerged as a critical issue in recent dec-
ades, as it can reveal the profitable itemsets in real-world situa-
tions. HUIM can be considered as an extension of FIM that
considers additional information such as quantities and unit profits
of items, to better assess how “useful” an itemset is to the user. An
item/set is considered as a high-utility itemset (HUI) if its utility is
no less than a user-defined minimum utility threshold. Since the
downward closure (DC) property used in traditional FIM and
ARM does not hold in traditional HUIM, Liu et al. [12] designed a
two-phase approach and developed a transaction-weighted down-
ward closure (TWDC) property to reduce the search space by prun-
ing unpromising itemsets early. Several level-wise and pattern-
growth algorithms have been proposed to efficiently mine HUISs,
using the two-phase approach [4,5,7].

In traditional HUIM, the utility of an item/set is defined as the
sum of its utilities in the database. An important problem with this
definition is that it does not take itemset length into account. Thus,
this definition is not a fair measurement of utility. To provide a bet-
ter assessment of each itemset’s utility, the task of high average-
utility itemset mining (HAUIM) was proposed by Hong et al. [9].
The proposed average utility measure estimates the utility of an
itemset by considering its length. It is defined as the sum of the
utilities of the itemset in transactions where it appears, divided
by the number of items that it contains. This measure addresses
the bias of traditional HUIM toward larger itemsets, by considering
the length of itemsets, and can thus more objectively assess the
utility of itemsets. As for traditional HUIM, level-wise and
pattern-growth algorithms have been designed for HAUIM. Level-
wise algorithms [9] require to generate numerous candidates for
mining the actual high average-utility itemsets (HAUIs). Pattern-
growth algorithms [15] require to recursively build conditional
trees for mining HAUIs, which is quite time-consuming. In this
paper, we first design an efficient average-utility (AU)-list struc-
ture and develop an algorithm named HAUI-Miner for mining
HAUIs using a single phase. The key contributions of this paper
are threefold.

1. We first design an efficient HAUI-Miner algorithm to mine high
average-utility itemsets (HAUIs). It relies on a novel condensed
average-utility (AU)-list structure. This structure only keeps
information required by the mining process, thus compressing
very large databases into a condensed structure.

2. An efficient pruning strategy is developed to reduce the search
space, represented as an enumeration tree, by pruning
unpromising candidates early. Using this strategy, building
the AU-lists of extensions of a processed node in the enumera-
tion tree can be avoided to reduce the amount of computation.

3. Substantial experiments are conducted to compare the
performance of the designed HAUI-Miner algorithm with the
state-of-the-art algorithms, in terms of runtime, number of
determining nodes, memory consumption, and scalability.

2. Related work

High-utility itemset mining (HUIM) [12,13,22], an extension of
frequent itemset mining, is based on the measurement of internal
utility and external utility. The internal utility of an item is its pur-
chase quantity in a transaction, and the external utility of an item
can be viewed as its unit profit, importance or weight. The utility of
an item/set in a database is calculated as the total purchase quan-
tity of the itemset in the database, multiplied by its unit profit
(external utility). The purpose of HUIM is to discover the complete
set of high-utility itemsets (HUIs), that are itemsets having a utility
no less than a minimum utility threshold. Yao et al. [22] proposed a

framework for mining HUIs based on mathematical properties of
the utility measure. Two pruning strategies were designed to
reduce the search space for discovering HUIs respectively based
on utility upper bounds and expected utility upper bounds. Since
the downward closure (DC) property of ARM does not hold in tra-
ditional HUIM, Liu et al. [12] then designed a transaction-weighted
downward closure (TWDC) property and developed the
transaction-weighted utilization (TWU) model. This latter provides
upper bounds on the utilities of potential HUIs, which can be used
to reduce the combinatorial explosion of the search space in tradi-
tional HUIM. However, the TWU model still requires to generate
numerous candidates to obtain the actual HUIs. Pattern-growth
algorithms have been proposed to compress the database into a
condense tree structure using the TWU model. Lin et al. [16]
designed a high-utility pattern (HUP)-tree algorithm to recursively
mine high-utility itemsets using the proposed tree structure. Tseng
et al. developed the UP-Growth [20] and UP-Growth+ [21] algo-
rithms to efficiently discover HUIs based on different pruning
strategies. The aforementioned approaches all rely on the TWU
model and its TWDC property for discovering HUIs. The search
space is, however, very large when using the TWU model, and it
is thus very time-consuming to discover the actual HUIs. As an
alternative to the pattern-growth mechanism, Liu et al. [13] devel-
oped the list-based HUI-Miner algorithm to discover HUIs without
candidate generation. The developed utility-list structure is an effi-
cient structure for maintaining the information required for min-
ing HUIs using a limited amount of memory. Fournier-Viger et al.
[7] extended HUI-Miner with a structure named EUCS to store
information about the relationships between 2-itemsets, thus
speeding up the discovery of HUIs. Several extensions of the task
of HUIM have been proposed such as discovering up-to-date HUIs
[17] and top-k HUIs [23].

Similarly to traditional HUIM, several HAUIM algorithms have
been designed using the TWU model. Lin et al. [15] first developed
the HAUP-tree structure and the HAUP-growth algorithm for min-
ing HAUIs. In the HAUP-tree, each node at the end of a path stores
the average-utility upper bound of the corresponding item as well
as the quantities of the preceding items in the same path. This
approach can thus be used to speed up the discovery of HAUISs.
Lan et al. [10] proposed a projection-based average-utility itemset
mining (PAI) algorithm to reveal HAUIs using a level-wise
approach. Based on the proposed upper-bound model, the number
of unpromising candidates can be greatly reduced compared to
previous work based on the TWU model. Lu et al. [18] proposed
the HAUI-tree algorithm to further reduce the number of
unpromising candidates for mining the actual HAUIs using a
designed enumeration tree structure. However, mining HAUIs
using the designed algorithm is still very time-consuming since
the upper-bounds used by these algorithms are loose, and thus
numerous unpromising candidates need to be generated, and the
recursive process for building the complete enumeration tree
remains costly.

3. Preliminaries and problem statement
3.1. Preliminaries

Let I = {iy,i2,...,im} be a finite set of m distinct items. A quan-
titative database is a set of transactions D = {T4,T>,...,T,}, where
each transaction Tq € D (1 <q<m) is a subset of I and has a
unique identifier g, called its TID. Besides, each item i; in a transac-
tion T, has a purchase quantity denoted as q(ij, T,). A profit table PT
indicates the unit profit value of each item in the database as PT =
{pr(i1),pr(i2),...,pr(in)}, where profit values are positive integers.
A set of k distinct items X = {iy,i,...,i} such that X CI is said to

Download English Version:

https://daneshyari.com/en/article/241933

Download Persian Version:

https://daneshyari.com/article/241933

Daneshyari.com

https://daneshyari.com/en/article/241933
https://daneshyari.com/article/241933
https://daneshyari.com

