
Freedom through constraints: User-oriented architectural design

R.A. Niemeijer, B. de Vries ⇑, J. Beetz
Eindhoven University of Technology, P.O. Box 513, 5600 MB, The Netherlands

a r t i c l e i n f o

Article history:
Received 1 May 2012
Received in revised form 22 July 2013
Accepted 12 November 2013
Available online 5 December 2013

Keywords:
Natural Language Processing
Design constraints
Automated interpretation

a b s t r a c t

In this article we report on validated research for the construction of design constraints by automated
interpretation of natural language input. We show how our approach of dynamic reconfigurations of
parsed syntax trees using a number of production rules is used to formalize and transform natural lan-
guage constructs into computable constraints that are applied to concrete building information models.
The calibration and validation of the proposed algorithms and production rules is based on two test data
sets: The verbatim text of Dutch building code regulations for dormer extensions on existing roofs and
constraints formulated ad hoc by design students based upon a series of example designs. We show
how a prototypical implementation of our approach can be used to interpret 44% of the test data without
human interference and how the remaining sentences can be interpreted with minimal additional effort
or further development.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, customers buying a new house are typically limited
to two options: either an architect’s design is bought without mod-
ifications, or a discrete set of limited design alternatives is offered,
such as two different kitchen types or the optional addition of a
dormer. This customization, however, is very limited, as all design
alternatives offered by the architect have to be completely de-
signed up front. Consequently, customers do not get the exact
house they want. In many cases this means that house owners
immediately start remodelling after the house has been built to
get the house they actually wanted. This is a very inefficient state
of affairs, leading to unnecessary increases in cost and waste. It
would be preferable for buyers to be able to make more extensive
changes to the design of the building in the design phase already,
so that they can get the house they want, eliminating the need
for an additional remodelling step.

In many different industries, the ability to customize a product
has become commonplace, with examples ranging from fast food
to clothing to the car industry. In the building industry, however,
adoption of this practice has lagged behind. At least two reasons
for this lack of customization can be identified: (a) The tradition
of the architect being the sole designer of the product and an
implied artistic autonomy. (b) The large amount of regulations that
apply to buildings. Over time, mass customization and participa-
tory design have been applied to the building and construction
sector [36,35]. In most cases, though, the amount of flexibility is

limited, since the two traditional ways of offering mass customized
housing—entirely customized design or choices from predesigned
alternatives—result in a trade-off between the freedom of choice
among design alternatives and the amount of time required to de-
sign them. When creating a design for a consumer product, many
rules must be obeyed [18] which in the case of buildings stem from
building codes, regulations and design requirements. In this paper,
rules are referred to as constraints [26,38,15] composing a Con-
straint Satisfaction Problem (CSP), that [37] defined as ‘‘a problem
composed of a finite set of variables, each of which is associated
with a finite domain, and a set of constraints that restricts the val-
ues the variables can simultaneously take.’’

In current practice, most of these constraints are checked
manually which results in labor-intensive and error-prone pro-
cesses. Hence, the automation of formulating, processing and
checking of constraints has been of great interest for research-
ers and practitioners from early years of computational support
onwards. Initial contributions by Fenves [13], Fenves and Garret
[14] have sparked a large body of research in this area. These
include the developments of AI-based Expert Systems [34,20]
as well as Knowledge Based Systems based on Frames [11,10]
and Predicate, First Order and Description Logic [33,17]. With
the advent of object-oriented Building Information Models
(BIM) and particularly the Industry Foundation Classes (IFC),
such systems have flourished considerably [19,24,40]. Recently,
the incorporation of methods and tools from the Semantic Web
initiative led to further advancements in this research field
[3,39,32,41]. A concise overview of these developments as well
as commercial implementations in the building industry can be
found in [12].

1474-0346/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.aei.2013.11.003

⇑ Corresponding author. Tel.: +31 402472388.
E-mail address: B.d.Vries@tue.nl (B. de Vries).

Advanced Engineering Informatics 28 (2014) 28–36

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2013.11.003&domain=pdf
http://dx.doi.org/10.1016/j.aei.2013.11.003
mailto:B.d.Vries@tue.nl
http://dx.doi.org/10.1016/j.aei.2013.11.003
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


Most of these developments, however, are based on complex lo-
gic languages or conventional high-level programming, only allow-
ing users with considerable ICT knowledge to specify, formalize
and encode constraints. Secondly, most requirements engineering
systems demand prior domain knowledge embedded as corpora
in databases. In order to enable ad hoc, per-project formulations
of computable constraints by design and engineering end-users,
alternative methods are required to address these needs. The goal
of this research is to find a method of constraint formulation and
entry that is usable by end-user practitioners such as engineers
and architects and that generates unambiguous computer inter-
pretable constraints. The research builds upon existing Natural
Language Processing (NLP) techniques and provides new techno-
logical insights and contributions in the context of architectural
design constraints.

The outline of this paper is as follows. First we will discuss NLP
in requirements engineering, NLP in building constraint entry and
our approach: parsing without a corpus. Following that, we present
our prototype system ‘‘ContraintSoup’’. The system’s algorithms
and components that constitute the prototype are explained in de-
tail. The interface of the prototype is discussed only briefly. We
then report the results of a series of experiments measuring the
ability of automated interpretation of architectural constraints
provided in the form of natural language as the input to the sys-
tem. Finally, conclusions are drawn on the advantages of the pro-
posed method and how the system can be developed further for
improved performance.

2. Constraint and rule formalization

2.1. Natural Language Processing in requirements engineering

Natural Language Programming (NLP) originates from the de-
sire in software development to use natural language instead of
computer scientist specific programming language such as Java
and C#. The advantages are obvious, namely a direct interaction
between the domain expert and the computer that executes the
expresses procedures. Despite the fact that many ‘high level pro-
gramming languages’ have been developed automatic program-
ming is still unresolved. [2] summarized four components of
automatic programming: a means of acquiring a high-level specifi-
cation (requirements), a mechanism for requirements validation, a
means of translating the high-level specification into a low-level
specification, and an automatic compiler for compilation of the
low-level specification. Since then, so-called Very High Level Lan-
guages (VHLL) were developed, such as BIDL [27] that were in fact
pseudo-natural languages with unambiguous syntax and seman-
tics. At that time with the advent of Object Oriented Programming
(OOP), many researchers (e.g. [31]) NLP in requirements engineer-
ing is seen as a part of the OO model generation process. This pro-
cess can be viewed as a sequence of processing steps that starts
from a raw text and proceeds to computer interpretable code.
Berzins et al. [4] provide a model for NLP that recognizes four
steps: (1) tokenization, (2) synthetic parsing, (3) semantic process-
ing, and (4) pragmatics.

The first part of this process is called Part-of-Speech Tagging [5],
and is performed by using a large sample of tagged text, which is
referred to as a corpus [22,6,28,8]. In tagged text, every word has
been assigned its proper part of speech. For every word in the input
text, the algorithm searches the corpus to find the correct part of
speech for that word.

The second step of NLP analyses larger chunks of a sentence
than individual words. The POS information from the previous
level is used but in combination with preceding and succeeding
words. Using the semantic meaning of some of these words,

hierarchical trees are constructed. Parsing methods apply often
statistics and rely upon a corpus of training data (words) that are
labelled with a specific meaning necessary for tree construction.

The third step is semantic processing. In this step ambiguity,
which is common in natural language, is addressed. An example of-
ten used to illustrate this is the following sentence:

‘‘Time flies like an arrow, but fruit flies like a banana.’’

The first occurrence of ‘‘flies’’ is a verb, but in the correct inter-
pretation the second occurrence is a noun. This is an example of a
case where one word has more than one possible part of speech, as
hinted on in the paragraph on corpora. The deterministic approach
stops working here, since the interpretation involving flying fruit
would be grammatically correct, but incorrect from the perspective
of common sense. The common solution for this problem is to use a
statistical approach, where each production rule of the grammar (a
rule that governs how parts of the sentence are combined, e.g. ver-
b + adverb = verb phrase) is also attributed with a relative fre-
quency with which it occurs. These types of grammars are
referred to as Probabilistic Context-Free Grammars (PCFG) or Sto-
chastic Context-Free Grammars (SCFG) [7,8]. Using these frequen-
cies, the parser can check the neighboring words to determine the
likelihood of a given interpretation scenario.

Finally, in the fourth step (pragmatics) is concerned with the
more complex linguistics issues, such as resolving what a pronoun
or noun refers to.

In [4], four challenges for using NLP in requirements engineer-
ing are listed:

(1) Ambiguity of word meaning and scope: words can have mul-
tiple meanings, and phrases and adjectives can refer to mul-
tiple words.

(2) Computational complexity: the possible need to check an
exponential number of parse trees.

(3) Tacit knowledge and anaphora resolutions: the difficulty in
resolving reference words such as ‘they’ when there are mul-
tiple possible targets without knowledge of the properties
and behaviors of those targets.

(4) Non-linguistic context: information about the stakeholder,
time of day, recent events, etc.

When it comes to word meaning, ambiguities can be partially
resolved due to the fact that the system operates in a domain-spe-
cific context. The word column, for instance, could refer to a verti-
cal list of figures in a spread sheet. In the context of building
constraints, however, it is considerably more likely to refer to a pil-
lar. Similarly, the variation in non-linguistic context is limited
since all text processed with the system will be a constraint. The
main contributions of the proposed algorithm lie in points 2 and
3. By using unit information and typical sentence structures of
architectural constraints, it is possible to resolve references and
other gaps in the parse tree without taking exponential time.

2.2. Natural Language Processing for building constraint entry

Currently, the majority of constraints in the building industry
are specified using a natural language, such as Dutch or English.
Examples of these include building codes and functional require-
ments in the client’s brief. The inherent complexity and flexibility
of natural languages, however, makes automated interpretation
exceedingly difficult, as it requires not just an understanding of
grammar, but also knowledge of a domain and a sense of context.
Although NLP has been applied in building and construction in a
large variety of areas, among which information extraction from
documents is the most prominent (see [25] for an overview), only
a limited amount of research has been dedicated to automate the

R.A. Niemeijer et al. / Advanced Engineering Informatics 28 (2014) 28–36 29



Download English Version:

https://daneshyari.com/en/article/241938

Download Persian Version:

https://daneshyari.com/article/241938

Daneshyari.com

https://daneshyari.com/en/article/241938
https://daneshyari.com/article/241938
https://daneshyari.com

