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Context: Model-based data-interpretation techniques are increasingly used to improve the knowledge of
complex system behavior. Physics-based models that are identified using measurement data are gener-
ally used for extrapolation to predict system behavior under other actions. In order to obtain accurate and
reliable extrapolations, model-parameter identification needs to be robust in terms of variations of sys-
tematic modeling uncertainty introduced when modeling complex systems. Approaches such as Bayesian
inference are widely used for system identification. More recently, error-domain model falsification
(EDMF) has been shown to be useful for situations where little information is available to define the
probability density function (PDF) of modeling errors. Model falsification is a discrete population
methodology that is particularly suited to knowledge intensive tasks in open worlds, where uncertainty
cannot be precisely defined.
Objective: This paper compares conventional uses of approaches such as Bayesian inference and EDMF in
terms of parameter-identification robustness and extrapolation accuracy.
Method: Using Bayesian inference, three scenarios of conventional assumptions related to inclusion of
modeling errors are evaluated for several model classes of a simple beam. These scenarios are compared
with results obtained using EDMF. Bayesian model class selection is used to study the benefit of posterior
model averaging on the accuracy of extrapolations. Finally, ease of representation and modification of
knowledge is illustrated using an example of a full-scale bridge.
Results: This study shows that EDMF leads to robust identification and more accurate predictions than
conventional applications of Bayesian inference in the presence of systematic uncertainty. These results
are illustrated with a full-scale bridge. This example shows that the engineering knowledge necessary to
perform parameter identification and remaining-fatigue-life predictions of a complex civil structure is
easily represented by the EDMF methodology.
Conclusion: Model classes describing complex systems should include two components: (1) unknown
physical parameters that are identified using measurements; (2) conservative modeling error estimations
that cannot be represented only as uncertainties related to physical parameters. In order to obtain accu-
rate predictions, both components need to be included in the model-class definition. This study indicates
that Bayesian model class selection may lead to over-confidence in certain model classes, resulting in
biased extrapolation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

System identification involves taking advantage of measure-
ment data to improve the understanding of system behavior. In
order to achieve this task, physics-based models can be employed
to help interpret measurement data. Such models are used to

predict system behavior at unmeasured locations and for other
actions. For example, vibration data from a bridge may be used
to infer uncertain physical parameter values such as stiffness val-
ues that are then used to predict fatigue lives.

Parameter identification and predictions are sensitive to sys-
tematic modeling errors that are induced by idealizations of real
systems. Systematic errors arise due to simplifications and
omissions in the modeling process and usually reflect spatially
interdependency between measurement locations. This type of
error is called model inadequacy in [26], model bias in [2], model
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discrepancy in [10] and modeling error in [20]. The last designation
is used in this paper.

In complex systems, data interpretation is ambiguous: multiple
models are able to represent measured behavior. Techniques such
as residual minimization, maximum likelihood estimates and max-
imum a posteriori estimates should be avoided when systematic
errors are present in the model, since they lead to the identification
of a single optimal model that is intrinsically imperfect due to
parameter-value compensation [2,3,20,31].

Techniques such as probabilistic Bayesian inference are able to
accommodate populations of solutions. Bayesian inference deter-
mines the full posterior distribution of the uncertain parameter
values by the construction of a likelihood function describing the
probability of observations given a set of parameter values. In this
way, this approach identifies model parameter values that are
compatible with the measurement data and all these values are
then used to predict system behavior.

Underestimating modeling uncertainty (i.e. either mean value
or variance) during data interpretation may lead to biased param-
eter identification and thus to inaccurate predictions. Moreover,
the convergence of the parameter values to the true values may
become even more biased as the number of measurements
increases [10,20]. Nevertheless, it is possible to identify biased
parameter values and still obtain accurate predictions when pre-
dicting inside the domain of experimentation. This type of predic-
tion is called interpolation [24]. However, learning the correct
values of physical parameters is important for the understanding
of the true behavior of the system and also for improving confi-
dence in model extrapolation [10,16]. Extrapolation values are pre-
dictions out of the measurement context, such as fatigue life in the
example of the beginning of this paper.

In Bayesian inference, the common assumption is that modeling
and measurement uncertainties are adequately described by inde-
pendent zero-mean Gaussian distributions [5,17,27]. Most applica-
tions integrate the prediction-error variance as a parameter during
the identification process [1,6,11,32,44] and some assign an arbi-
trary value to the variance [4,15,18,41]. These applications lead
to correct parameter identification since the assumptions made
for the probability density functions (PDF) of prediction errors
are compatible with assumptions related to model-class fidelity
to the real system. Also, in situations where systematic errors are
absent, using the current Bayesian scheme for establishing the pre-
dictive distribution leads to correct interpolation and extrapolation
[3–5,32,46,47]. Behmanesh et al. [7] includes mean values, the
variance and correlation values of modeling uncertainty as updat-
ing parameters. However, it is shown that this approach leads to
biased identification in the presence of systematic errors. Except
for [7], there are few applications of Bayesian inference involving
systematic errors and few studies have evaluated the validity of
such assumptions through comparisons with other approaches.

The complexity of a model class is often only defined by the
type and the number of parameters that require identification.
However, the complexity depends also on the level of detail that
is achievable and thus, depends on the modeling errors. Bayesian
model class selection can be used to identify an optimal model
class among a set of model classes that returns the best trade-off
between data fitting and model-class complexity [6,14,30,44,45].
When several model classes are plausible, all of them are used by
weighting each model-class prediction according to their plausibil-
ity in order to obtain robust predictions. Bayesian model class
selection was also used to identify the best correlation model
[40]. Another application involved the selection of the best
prediction-error variance model [18]. However, the best model
class led to a biased posterior PDF because of the presence of
systematic modeling errors that were not characterized in the
model-class definition. In addition, there has been little discussion

of situations involving Bayesian model class selection where every
model class is biased among the set of possible model classes.

Goulet and Smith [20] proposed an approach that is suitable
when little is known about modeling errors. This approach, called
error-domain model falsification (EDMF), combines estimated
PDFs of each source of modeling and measurement error and
determines conservative probabilistic thresholds that are used to
falsify inadequate models. Modeling errors are estimated using
engineering judgment and field observations. They have shown
that this approach leads to robust parameter identification in the
presence of systematic errors without precise knowledge of the
dependencies between modeling errors. Goulet and Smith [20] also
demonstrated that the assumption of independence in the com-
mon definition of uncertainties in Bayesian inference may bias
the posterior distribution of parameter values in the presence of
systematic errors. This last observation has also been noted by
Simoen et al. [40]. However, the effects of systematic modeling
errors on interpolations and extrapolations were not studied.

This paper builds on the work by Goulet and Smith [20] through
comparing results for predictions. Robustness of parameter-value
identification and accuracy of interpolations and extrapolations
are studied for several model classes of a simple beam. Using
Bayesian inference for data interpretation, three scenarios are
evaluated: (1) modeling errors are not included in the
data-interpretation process; (2) modeling errors are described by
Gaussian PDFs; (3) the variance of the prediction-error uncertain-
ties is parametrized and is part of the set of parameters that are
identified using the Bayesian framework. These scenarios are com-
pared with results obtained using EDMF. Finally, Bayesian model
class selection is used to study the benefit of posterior model aver-
aging on the accuracy of extrapolations and is compared with
extrapolations obtained using EDMF.

Sections 2 and 3 present an overview of Bayesian inference,
Bayesian model class selection and error-domain model falsifica-
tion. Section 4 illustrates the comparison between these
data-interpretation techniques by an example involving a simply
supported beam.

2. Bayesian inference

Bayesian inference uses information obtained from measure-
ment data to update prior knowledge of the system through the
identification of parameter values. Let y ¼ ½y1; . . . ; ynm

�T be a vector
of measurement data from a physical system where nm is the num-
ber of measurements. Then, let G be a possible model class describ-
ing the system and gðhÞ a vector of model predictions where
h ¼ ½h1; h2; . . . ; hnp �

T is a vector of np parameters having uncertain
values and defined on the parameter domain H # Rnp . The infer-
ence of the parameter values of the model class G is based on
Bayes’ Theorem of conditional probability:

pðhjy;GÞ ¼ pðyjh;GÞpðhjGÞ
pðyjGÞ ð1Þ

where pðhjy;GÞ is the posterior PDF given the measurement data y
and the model class G;pðhjGÞ is the user-defined prior PDF or prior
knowledge of the uncertain parameter values, pðyjh;GÞ is the likeli-
hood function and the denominator PðyjGÞ is the evidence for the
model class given by measurement data y. This term is used as a nor-
malizing constant in Eq. (1) and is also important for model class
selection, which is presented in Section 2.1. The prior knowledge
indicates the initial user’s judgment of the plausibility of the uncer-
tain parameter values before data are taken into account. The likeli-
hood function expresses the probability of observing measurement
data from the model class having a specific set of parameters. This
gives a measure of data-fit of the model. This approach updates
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