Advanced Engineering Informatics 27 (2013) 261-269

journal homepage: www.elsevier.com/locate/aei

Contents lists available at SciVerse ScienceDirect

Advanced Engineering Informatics

ADVANCEQ ENGINEERING,

Model falsification diagnosis and sensor placement for leak detection in

pressurized pipe networks

James-A. Goulet**, Sylvain Coutu®, lan F.C. Smith?

@ CrossMark

2 Applied Computing and Mechanics Laboratory (IMAC), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

b Ecological Engineering Laboratory (ECOL), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland

ARTICLE INFO ABSTRACT

Article history:

Received 9 August 2012

Received in revised form 27 October 2012
Accepted 7 January 2013

Available online 8 February 2013

Keywords:

System identification
Leak detection
Sensor placement
Data interpretation
Water distribution

Pressurized pipe networks used for fresh-water distribution can take advantage of recent advances in
sensing technologies and data-interpretation to evaluate their performance. In this paper, a leak-detec-
tion and a sensor placement methodology are proposed based on leak-scenario falsification. The
approach includes modeling and measurement uncertainties during the leak detection process. The per-
formance of the methodology proposed is tested on a full-scale water distribution network using simu-
lated data. Findings indicate that when monitoring the flow velocity for 14 pipes over the entire network
(295 pipes) leaks are circumscribed within a few potential locations. The case-study shows that a good
detectability is expected for leaks of 50 L/min or more. A study of measurement configurations shows
that smaller leak levels could also be detected if additional pipes are instrumented.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The quantity of fresh water lost due to leaks in water supply
networks may reach up to 50% of the input in cases of insufficient
maintenance [23,26]. Leaks involve not only costs; they may also
pose a threat to the environment and human health [7,30]. For
these reasons, current research aims to extend the usefulness of
computer-aided diagnosis techniques for the detection of leaks in
pressurized pipe networks.

Current computer-aided leak-detection techniques can be di-
vided into two categories: external and internal leak detection sys-
tems [1]. Since the 1990s acoustic logging has become the most
widely used external detection method [27,29]. Either vibration
sensors or hydrophones are fixed to the pipes to record ambient
noise. Leaks are detected when the signal deviates from the normal
recordings. Even through these techniques are able to detect small
leaks, they usually require a large number of sensors spread over
the entire network.

Other external methods such as ground penetrating radar have
received an increasing interest in recent years [12,19]. This non-
destructive approach provides cross sectional profiles of the soil
around pipes in order to detect water leakage. However, its appli-
cation is time consuming and not suited to large urban areas. Other
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liquid detection methods use sensing cables buried beside pipes to
detect impedance changes when soil gets saturated with fluid [18].
Cables are connected to a central processing system where the data
is collected and interpreted. Although accurate, this system has the
disadvantage of being invasive.

The second category of leak-detection methods gathers tech-
niques that use continuously monitored data (usually water veloc-
ity or pressure) to infer the position of leaks using models. These
techniques are referred to as internal or inferential methods. One
of the first methods was introduced by Ligget and Chen [24] and
have since been derived in a number of techniques
[8,9,13,14,22,28,33]. These methods are able to take advantage of
the interconnectivity of networks to reduce the number of sensors
required.

In the field of model-based data interpretation, several ap-
proaches are calibrating model parameters (e.g. the leak location)
by minimizing the discrepancy between predictions and measure-
ments [20,25]. These approaches are known for their poor predic-
tive capability in case where models contain simplifications
compared with the real systems [2,3,5]. Approaches such as GLUE
[3,4] and error-domain model falsification [15-17] may be used to
identify parameter values such as leak locations using models
without having to define completely the error structure associated
with model predictions. The error-domain model falsification ap-
proach was developed in the field of structural identification. The
central idea is to falsify model instances (parameter sets) for which
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Nomenclature

N number of loops

Q the true value for a quantity

T threshold lower and upper bounds

T multidimensional domain where threshold bounds are
defined

U uncertainty source described by a random variable

g(---) model of the water network

Nimax number of nodes in the network

DPmax number of pipes in the network

Drec number of pipes measured

v predicted flow velocity

y measured flow velocity

Ysim simulated measured flow velocity

Y and Ygp Vvectors containing respectively the number of candi-
date leak scenarios and the radius including all leaks for
each simulated measurement instance

T random variable describing quantities used during the
computation of expected identifiability metrics
€ error instance

0 physical parameter of a model. For leak detection it cor-
responds to leak flow

¢ target probability content €]0,1]

oF target certainty used as metric to quantify the perfor-
mance of measurements €]0,1]

fx probability density function (pdf) of a random variable X

Fx cumulative distribution function (cdf) of a random vari-
able X

Fy! inverse cumulative distribution function of a random
variable X

the difference between predictions and measurements are larger
than the maximal plausible error. Maximal plausible errors are
determined through combining modelling and measurement
uncertainties.

This paper builds on the error-domain model falsification meth-
odology to provide a leak detection methodology for pressurized
pipe networks. The main objective is to investigate the viability
of a detection system at the scale of a city through quantifying
the relationship between the number of sensors used and the ex-
pected leak-detection performance. Section 2 describes the data-
interpretation approach and Section 3 presents a case-study where
the leak detection capability is studied using a full-scale water dis-
tribution network located in Lausanne, Switzerland. Finally, a dis-
cussion of results is provided in Section 4.

2. Methodology

In the context of leak detection, the hypothesis tested is that a
leak is occurring at a specific location in the network. Such hypoth-
esis is parametrized in the model of the system as a leak scenario. A
leak scenario is falsified if the differences between predicted and
measured flow velocities in the network are larger than the maxi-
mal plausible error, for any measurement location.

Prior to measurement, choices have to be made regarding
where to place sensors on the network to most efficiently detect
leaks. These decisions are founded on a systematic methodology
using simulated measurements. The next subsections describe
the system variables (Section 2.1), provide details on how to falsify
leak scenarios (Section 2.2), and shows how to generate simulated
measurements to design optimized measurement systems
(Section 2.3).

2.1. Description of the system variables

When the right values for a vector of model parameters
0* = [07,...,0;,,] are known, the predictions returned by a model
g(0*) corresponds to the real quantity Q plus a modeling error
€model- The same happens with observations where a measurement
y represents the real quantity Q plus a measurement error €measyre-
This relation is expressed in Eq. (1).

g(O*) — Emodel = @ =Y — Emeasure (1)

By reorganizing terms of Eq. (1), the residual of the difference be-
tween a model prediction and a measurement is equal to the differ-

ence of model and measurement errors. This relation is expressed in
Eq. (2).

8(0") — ¥ = €model — Emeasure (2)

The real value for an error € cannot be exactly known. Instead, the
probability of error values can be described by a random variable U
having a probability distribution function (pdf), fu(€). Uc; is a random
variable representing the combined uncertainty obtained by com-
puting the difference between modeling and measurement uncer-
tainty sources for a comparison point where predictions and
measurements are available i € {1, ..., pr}. In the case of pressur-
ized pipe networks, the quantities compared are the fluid velocities
in pipes recorded and predicted for p,.. locations, where p;.. is smal-
ler or equal to the total number of pipes pax. The combined uncer-
tainty represents the expected residual of the difference between
predicted and measured values. Techniques available to combine
uncertainties are presented in ISO guidelines [21]. Leak scenarios
are considered as plausible if the residual outcomes are included
in the intervals [Tiow, Thigni]. These threshold bounds define the
shortest intervals including a target probability ¢ € ]0,1] for the do-
main 7 (see Eq. (3)).

T = [Tlow‘l 3 Thigh.l] X [TIOW.27 Thighl} Xoeee
X [Tiowpree > Thigh,pyec) © R 3)

Also, threshold bounds can be conservatively set to be the shortest
intervals [Tiow, Thigni] including a target probability ¢'/Pe as pre-
sented in Eq. (4).

Thigh,i
{Tlow.h Thigni = ¢'/Pec = /T fU“v(Ec,i)dec.i}Vi €{1l,... Prec} (4)
low.i

This methodology employs the Sidik correction [32] where the
realizations of random variables U.; have a probability larger or
equal to ¢ of simultaneously lying within threshold bounds (see
Eq. (5)). It ensures that the methodology do not wrongly discard
a leak scenario with a probability larger or equal to 1 — ¢. This
has been shown to be feasible without requiring the definition of
uncertainty dependencies defining the error structure between
several comparison points [16].

P(NfrTiow; < Uci < Thigni) = ¢ (5)
2.2. Leak-scenario falsification

In the following section, g;(#) represents the model of the net-
work where i € {1, ..., pr.c} corresponds to the pipe number where
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