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a b s t r a c t

With the capability of capturing detailed geometry of bridges in minutes, laser scanning technology has
attracted the interests of bridge inspectors and researchers in the domain of bridge management. A chal-
lenge of effectively utilizing laser scanned point clouds for bridge inspection is that inspectors need to
manually extract and measure large numbers of geometric features (e.g., points) for deriving geometric
information items (e.g., the minimum underclearance) of bridges, named as bridge surveying goals in this
research. Tedious manual data processing impedes inspectors from quantitatively understanding how
various data processing options (e.g., algorithms, parameter values) influence the data processing time
and the reliabilities of the surveying goal results. This paper shows the needs of automatic workflow exe-
cutions for extracting surveying goals from laser scanned point clouds, and presents a computational
framework for addressing these needs. This computational framework is composed of formal represen-
tations of workflows and mechanisms for constructing and executing workflows. Using a prototype sys-
tem implemented based on this framework, we constructed and quantitatively characterized three
workflows for extracting three representative bridge surveying goals, using three metrics of workflow
performance defined in this research: exhaustiveness of measurement sampling, reliability of surveying
goal results, and time efficiency.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Laser scanning is a 3D imaging technology attracting the inter-
ests of scientists and engineers working in the domain of bridge
inspection [13,14,16,20]. A terrestrial laser scanner continuously
sends and receives laser signals while rotating horizontally and
vertically for measuring the 3D environment around it, with data
collection rates of thousands to hundreds of thousands points per
second [40]. Such high data collection rates make it possible to ac-
quire dense point clouds capturing features smaller than 1 cm
within 50 m from the scanner, while keeping the data collection
time less than 10 min (these values may vary based on the scanner
used). A case study conducted by the authors shows that an inspec-
tor can use a scanner to collect dense point clouds for a 30 m high-
way bridge within 1 h [38]. Using commercially available 3D
reverse engineering environments [18,19], bridge inspectors can
construct 3D surface models of bridges based on point clouds,
and conduct measurements on these models. This process is
known as ‘‘virtual surveying’’ [18,22,24].

During virtual surveying, bridge inspectors manually measure
bridge models and derive geometric information items of bridges.
Examples of such items are the geometric data items required by
the National Bridge Inventory (NBI) program, such as ‘‘the mini-
mum vertical underclearance of a bridge’’ and ‘‘the cross-section
losses of bridge components.’’ In this paper, these data items are
referred to as ‘‘Surveying Goals.’’ Even though ‘‘virtual surveying’’
saves on-site surveying time [1,13,36], bridge inspectors need to
manually repeat multiple data processing operations for most sur-
veying goals [38]. In the United States, the NBI program requires
bridge inspectors to report 27 surveying goals for more than
600,000 bridges biennially [43,46]. Repeating large number of
measurements for the surveying goals of all these bridges leads
to large amounts of labor hours and possible errors. In addition,
each data processing operation in a ‘‘virtual surveying’’ workflow
could have multiple alternative implementations based on algo-
rithms of similar data processing functionalities. Furthermore,
each algorithm may have multiple parameters influencing the sur-
veying goal results and data processing time [38]. As inspectors de-
sire to know which data processing options best satisfy their needs
(e.g., the needed reliability of the surveying goal results), manual
data processing seriously constrains inspectors’ capabilities of
evaluating large number of data processing options.
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For better utilizing laser scanned point clouds in bridge inspec-
tion, this research aims at:

(1) Formalizing a computational framework for constructing
and executing 3D data processing workflows that can auto-
matically extract bridge surveying goals from laser scanned
point clouds;

(2) Exploring the capability of this computational framework in
characterizing and comparing the performances of data pro-
cessing workflows (e.g., reliability, time efficiency) so that
inspectors can better explore and understand the impacts
of various 3D data processing options.

In [38], we described formal (i.e., computer-interpretable) rep-
resentations of workflows to capture users’ data processing proce-
dures for extracting surveying goals from point clouds. That study
identified nine generic operations (detailed in Section 3.1), mod-
eled them as generic operation classes, and created an extensible
operation library. Users can select operations from this operation
library, and semi-automatically connect them into workflows.
Based on formal workflow representations, the research described
in this paper focuses on constructing executable workflows for rep-
resentative surveying goals, exploring mechanisms capable of
automatically executing these workflows, and characterizing the
performance of these workflows in terms of the exhaustiveness
of measurement sampling, reliability of surveying goal results,
and time efficiency (detailed in Section 8). Specifically, we studied
three representative surveying goals: ‘‘the minimum vertical
underclearance of a bridge,’’ ‘‘the minimum horizontal clearance
under a bridge,’’ and ‘‘average cross-section losses of individual
piers of a bridge.’’ We selected these three goals because they cover
two major categories of surveying goals: Space Clearance, and
Area; 18 out of 27 NBI related surveying goals fall into these two
categories. Detailed discussions about the representativeness of
surveying goals are in [38].

2. Motivating case

To understand the potentials of using laser scanned data for
bridge inspection, we conducted a case study on a 30 m single-
span highway bridge, which was hit by oversized trucks twice par-
tially due to inaccurate documentation of its ‘‘minimum vertical
underclearance.’’ Once the point clouds were collected using two
different scanners, we constructed 3D bridge models using a com-
mercially available 3D reverse engineering environment (Fig. 1a),
and manually took measurements on these models (Fig. 1b and c).

The reverse engineering environment used in this case study
provides functionalities for generating cross-sections on a user-de-
fined plane and for measuring point-line distances on cross-sec-
tions. Using this software, one approach for obtaining the vertical
underclearances underneath the bridge involves: (1) cutting the
constructed 3D models using vertical planes (Fig. 1b) and (2) mea-
suring the distances between the bottom of the superstructure and
the road under the bridge on these vertical cross-sections (Fig. 1c).

Analysis of this ‘‘virtual surveying’’ process revealed several of
its limitations. First, this manual process involved repetitions of
some operations, which could lead to substantial time require-
ments. For instance, we spent about 2 min to finish 35 point-line
measurements on five cross-sections. For over 600,000 national
bridges in US, each of which need to be inspected at least bienni-
ally for getting 27 surveying goals, finishing all these NBI geometric
documentation will take millions of person-hours. Second, even
with large amounts of time invested into manual measurements,
the reliability of the generated surveying goal results is still not
clear to inspectors. For instance, as 35 measurements of the

vertical underclearance vary from 4.5 m to 4.8 m, it was still un-
known how close the minimum value of these measurements is
to the minimum vertical underclearance captured in the collected
data. In other words, inspectors are not sure to what level the sam-
pled measurements can be trusted compared with an ‘‘exhaustive’’
measurement process on the constructed 3D bridge models (e.g.,
measure vertical clearances at all locations having laser scanned
points). In fact, it is subjective to say that 35 measurements will
be sufficient in determining the minimum underclearance of this
bridge given a user-defined uncertainty level. An interview with
a bridge inspector indicated that without any objective method
for quantifying the ‘‘exhaustiveness of measurement sampling,’’
inspectors tend to add a ‘‘buffer’’ value of about 2 cm to the mini-
mum underclearance result obtained through a manual measure-
ment sampling on the point clouds. That ‘‘2 cm buffer’’ again is a
subjective value decided by bridge inspectors based on their expe-
riences, and it might vary person by person, or even case by case.
For instance, for a skewed and sloping bridge, inspectors tend to
be more conservative and set a larger ‘‘buffer’’ value.

All these problems can potentially be resolved by automating
the generation of the results of surveying goals from point clouds.
Through such automation, it is conceivable to imagine sampling
more than 35 measurements for determining the minimum verti-
cal underclearance of a bridge in shorter periods of time. The chal-
lenge with such automation is to develop a general approach that
is applicable to a variety of bridge surveying goals, and to charac-
terize how exhaustively, reliably, and efficiently the measurements
are generated for deriving these surveying goals given the collected
point clouds. Based on a workflow representation and composition
approach detailed in [38], this paper focuses on: (1) Formalizing
and implementing data processing workflows for extracting three
representative surveying goals by reusing existing geometric algo-
rithms; (2) developing mechanisms for automatic executions of
these workflows on laser scanned point clouds; (3) characterizing
the exhaustiveness and reliability of the surveying goal results
generated by these workflows, and analyzing the trade-off be-
tween the workflow execution time and the measurement exhaus-
tiveness of the surveying goal results.

3. Previous research

Two research fields are related to extracting geometric informa-
tion from 3D point clouds through the automation of data process-
ing workflows: (1) Algorithms for 3D data processing and
modeling; and (2) scientific workflow and process modeling.

3.1. Algorithms for 3D data processing and modeling

In Ref. [38], we have identified nine categories of 3D data pro-
cessing algorithms required by bridge inspectors for extracting
surveying goals:

(1) Object recognition (e.g., recognize which points belong to
the bridge superstructure).

(2) Geometric primitive extraction (e.g. plane fitting).
(3) Sampling points on geometric primitives (e.g., sample ran-

dom points on a plane).
(4) Grouping objects (e.g. group a number of piers into rows).
(5) Extracting relationships between geometric primitives (e.g.,

extract the distance between two points).
(6) Observation of geometric attributes (e.g. observing the area

of a polygon).
(7) Identification of objects with attribute values falling in a

user-specified range (e.g. identifying polygons smaller than
a threshold).
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