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In most industrial design processes, the approaches used to obtain a design solution that best fits the
specification requirements result in many iterations of the “trial-and-error” type, starting from an initial
solution. In this paper, a method is proposed to formalize the decision process in order to automate it, and
to provide optimal design solutions. Two types of knowledge are formalized. The first expresses the sat-
isfaction of design objectives, relating to physical behaviors of candidate design solutions. This formaliza-
tion uses three models, an observation one, an interpretation one and an aggregation one; every design
solution is qualified through a single performance variable (a single objective function). The second
model is related to modifications that may or may not be applicable to the pre-existing solution. The
Designer is often able to define preferences concerning design variables. Some modifications related to
this pre-existing solution, can be preferred to other ones. A hierarchy of design variables is proposed
to formalize these preferences. The concept of arc-elasticity is introduced as a post-processing indicator
to qualify candidate solutions through a trade-off between the performance improvement and their rel-
ative distances to the initial solution. The proposed method is used and applied to a riveted assembly, and
a genetic algorithm is used to identify optimal solutions.
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1. Introduction

In industrial processes, a typical occurrence in sub-contracting
mechanical design, design activity is based on companies’ know-
how as well as on designer’s imprecise knowledge [1]. These pro-
cesses require several iterations between product design and
simulation, starting from a predefined solution. The aim of this
“trial-and-error” approach [2,3] is to obtain a product that corre-
sponds to criteria defined in the design specification documents,
via an iterative process of decision-making and optimization. Opti-
mization is mostly based on knowledge rather than on numerical
optimization methods. This time-consuming process provides no
guarantee of approaching an optimal solution and no justification
of the decision process. During such processes, designer prefer-
ences linked to the initial solution and to the behavior of the prod-
uct are applied.

In the following paper, reasoning is based on a single solution,
called the reference solution or initial solution since it is involved
in an iterative process; this reference solution is related to designer
preference and supports the mathematical formulation of this
preference. Indeed, design activity is often underpinned by one
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pre-existing solution whose structure is regarded as preferable
even if it is not precisely adapted to the ongoing design problem.
The design and development (prototyping, testing, and industrial-
ization) of this reference solution may require significant invest-
ment (costs and delays); and by the end of the process this
solution is regarded as well known and secure. The structure of
new design solutions is implicitly constrained to remain close to
this initial solution as any difference between a candidate solution
and the initial solution will imply additional costs [4]. Thus, it is
possible to formalize user preferences as a distance between opti-
mal and initial solutions.

The majority of product design optimization problems are
regarded as being “multi-objective” [1]: satisfying one of the
product’s performance criteria, which are related to physical obser-
vation variables, is linked to the performance of the other observa-
tion variables. Ullman proposes a list of the main elements that
must be taken into account in making decisions for this kind of
problem: design alternatives and human preferences [5]. Human
preference is therefore a major element in design and Augusto
et al. [6] distinguishes a priori and a posteriori decision assistance
to express these preferences. A priori decision support and de-
signer’s preferences concerning the product are formulated in the
mathematical optimization problem in the same ways as the phys-
ical behavior model of the product.
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Numerous methods can be used to tackle multi-objective prob-
lems taking designer’s preferences into account. Jones et al. [7]
describes three of these methods, namely the reference point
method, goal programming and compromise programming.
Romero underlines similarities in these approaches. All of these
methods are based on a precise modeling of the design objectives
[8]. The optimization process then consists in minimizing the gap
between the candidate design solutions and these objectives. Other
methods use designer’s preferences formalized through design
decision-making methods [9]. Utility theory [10], introduced in
economics, proposes to interpret an observation variable through
a utility curve formalizing the preference. Marston illustrates this
method [11]. Starting from the Utility theory, Antonsson has devel-
oped the Method of Imprecision (Mol) where multiple variables
are qualified using fuzzy logic and are aggregated through design
strategies [12,13]. These aggregation strategies are structured by
design axioms to ensure their design-ready property [14]. The
Observation-Interpretation-Aggregation method (OIA) is a similar
process, structuring the modeling of product behavior and prefer-
ences through three models [15,16]. The first is a predictive model
of the product’s behavior; the second qualifies the observation
variables using desirability curves [17], while the third aggregates
the resulting interpretation variables, formalizing and prioritizing
the design objectives via an aggregation step [18,19]. The OIA
method is employed to quantify the product’s performance
through a single variable.

Later on, we consider two types of variables: the product’s per-
formance and the distance between one candidate solution and a
reference solution. Then, the concept of arc-elasticity is introduced
as a decision support indicator of the relative improvements or
degradations in these two variables. Elasticity has been introduced
in the area of microeconomics [20]; Allen and Lerner [21] proposes
the principle of arc-elasticity based on the measurement of the
elasticity between two points. In this paper, this concept is applied
in engineering design to quantify trade-offs in the selection of dif-
ferent candidate solutions.

From this preference trade-off an original optimization method
is proposed. The paper begins by defining the OIA modeling meth-
od and the three resulting models. In the second part, the arc-elas-
ticity indicator is presented and adapted to the design field. Next,
from this model and this indicator, we propose a global optimiza-
tion method based on the sequential search for optimal solutions
using a hierarchy of design variables. This process is described in
the third part of the article. Finally, in the fourth part, the method
is illustrated by applying it to a fastened assembly (with rivets) and
by optimizing the mechanical system with a genetic algorithm.

2. Modeling methodology of performance

Multi-objective optimization problems consist in finding opti-
mal values for every observation variable. Designer’s expectations
relative to these variables are generally conflicting [19]. Solving
multi-objective optimization problems must be performed through
a trade-off between the different candidate solutions. This trade-off,
derived from an aggregation process, is used to pass from several
variables to a single one.

We argue that designer’s preferences deriving from his know-
how and experience are not formalized in the observation model.
However, designer’s preferences are used to interpret every obser-
vation variable. Designers have information that enables them to
decide whether a value is acceptable or not, information which
can be formalized. In the following, preferences are formalized
using mathematical functions. The Observation-Interpretation-
Aggregation approach (OIA) is used to translate the design problem
into a mono-objective function including both physical behavior

and decision models. The OIA approach, detailed in the present
section, is divided into three models (Fig. 1):

1. The observation model . is a model of the behavior of the prod-
uct (physics, economics, etc.).

2. The interpretation model & expresses the design criteria trans-
lating physical observation variables into desirability levels.

3. The aggregation model & formalizes and defines priorities
between the design objectives.

2.1. Design variables and observation model

Design variables (also called decision variables or design param-
eters according to some authors) are related to the main structural
characteristics of the system that must be quantified by the design-
ers and correspond to the degrees of freedom on which designers
act to define the system; system performances result from the
values of these variables. In the following, X is defined as the vector
containing every design variable x;. The design search space Q
(Fig. 1) is defined as the space containing every candidate solution
of the optimization problem. Therefore, this space is formed from
every possible instantiation of the vector X.

Every design variable x; is associated with a value domain
bounding the admissible values of the variable. The value domain
of x; is denoted as [X; ;X ]. Therefore the design search space and
the design variables vector satisfy:

XeQ
withX=1[x ... x ... x| (1)
and O = {[x;:%{] -+ [x %] [% %]}

Value domains can be continuous (dimensions, energy quantities,
etc.) or discrete (materials, numbers of parts, product architectures,
etc.). Their boundaries are defined by designers, from design
requirement documents and also from his expertise.

An instantiated vector X defines a candidate solution. From this
solution, the observation model computes the observation vari-
ables y;, which forms the vector Y. These variables are used to ob-
serve the product’s behavior from which the performances of the
product are derived. The observation model verifies:

PO =Y WithY=[y; .. % o Yl )

2.2. Interpretation model

Observation variables are then translated into an interpretation
variable (vector Z) through the interpretation model. We propose
to build formal interpretation functions using desirability func-
tions, but other “value functions” can be employed [22]. The desir-
ability notion was first suggested by Harrington [17] in the area of
quality, and is commonly used in multi-objective optimization
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Fig. 1. Modeling methodology.
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