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a b s t r a c t

Mathematical modeling has become an integral component in biotechnology, in which these models are
frequently used to design and optimize bioprocesses. Canonical models, like power-laws within the Bio-
chemical Systems Theory, offer numerous mathematical and numerical advantages, including built-in
flexibility to simulate general nonlinear behavior. The construction of such models relies on the esti-
mation of unknown case-specific model parameters by way of experimental data fitting, also known as
inverse modeling. Despite the large number of publications on this topic, this task remains the bottleneck
in canonical modeling of biochemical systems. The focus of this paper concerns with the question of iden-
tifiability of power-law models from dynamic data, that is, whether the parameter values can be uniquely
and accurately identified from time-series data. Existing and newly developed parameter identifiability
methods were applied to two power-law models of biochemical systems, and the results pointed to the
lack of parametric identifiability as the root cause of the difficulty faced in the inverse modeling. Despite
the focus on power-law models, the analyses and conclusions are extendable to other canonical models,
and the issue of parameter identifiability is expected to be a common problem in biochemical system
modeling.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Mathematical modeling has become an indispensable tool in
biotechnology and biological studies with myriad applications
from metabolic engineering to cancer therapy. The procedure of
model construction is generally iterative, in which wet-lab exper-
iments generate the biological observations and data needed for
model formulation and identification, while in silico simulations
are used to (in)validate models and to design the most informative
experiments (Chou and Voit, 2009; Kitano, 2002a,b). Biochemi-
cal models are typically formulated according to physicochemical
laws, such as mass or molar balance, and mathematical equations
are written down to describe the rate of reactions or transforma-
tions among different molecules. By using different approximations
of the nature of these transformations, numerous mathematical
frameworks, e.g. Boolean, ordinary differential equation (ODE), and
stochastic chemical master equation, have been used in biochem-
ical system modeling. These models commonly contain unknown
model parameters, which are usually determined such that model
simulations can reproduce experimental observations. This step,
known as inverse modeling, is often the limiting step in biochem-
ical model construction (Banga and Balsa-Canto, 2008; Chou and
Voit, 2009; van Riel, 2006).
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Among all mathematical frameworks, ODEs are by far the most
commonly used and most relevant for biotechnological applica-
tions. In general, the mathematical equations are written as Ẋ =
f (X, �), where X denotes the concentration vector of biomolecules
like metabolites, � is the parameter vector, and f(X,�) is a gen-
eral vector-valued nonlinear equation. While ODE models predict
the concentrations as a function of time, i.e. they are dynamical
models, steady state models can be directly derived from ODEs by
setting Ẋ = 0. In metabolic networks, f(X,�) is usually expanded
into Nv(X,�) where the matrix N gives the stoichiometric relation-
ships of the metabolic transformations with rates or fluxes that
are given by the vector v(X,�). The functionality of v(X,�) should
depend on the mechanisms by which the enzymatic transformation
from one metabolite to another follows, e.g. Michaelis–Menten law.
However, to capture more general nonlinear behavior, power-law
approximations have been frequently used as canonical ODE mod-
els, such as generalized mass action (GMA) and S-system models.
GMA models are generally written according to:

Ẋi =
ki∑

k=1

⎛
⎝±�ik

n+m∏
j=1

Xfikj
j

⎞
⎠ . (1)

where Xi here denotes the ith metabolite, n and m are the number of
dependent and independent metabolites, respectively, � iks denote
the rate constants and fikjs denote the kinetic order parameters.
On the other hand, in S-system models, influxes and effluxes of
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metabolites are combined into individual power-law terms, giving:

Ẋi = ˛i

n+m∏
j=1

Xgij
j − ˇi

n+m∏
j=1

Xhij
j , (2)

where the parameters ˛i and ˇi are the (non-negative) overall rate
constants, and gij and hij are the effective kinetic order parame-
ters. These and other canonical ODE models such as Lotka-Volterra
models (Hernández-Bermejo and Fairén, 1997), linear-logarithmic
approximation (Hatzimanikatis and Bailey, 1996), and saturable
and cooperative (SC) formalism (Sorribas et al., 2007) permit the
development of model identification procedures and quantita-
tive/numerical analyses that can be tailored and highly optimized
for each formalism, such as those within the Biochemical Systems
Theory (BST) for power-law models (Marino and Voit, 2006; Voit
and Almeida, 2004; Voit and Ferreira, 2000).

Power-law models have wide applications not only in metabolic
networks (Voit and Ferreira, 2000), but also in other biological
systems such gene networks and signal transduction pathways
(Hlavacek and Savageau, 1996; Kimura et al., 2004; Vera et al.,
2007), which motivates the focus on these models here. The
benefits and limitations of power-law approximations have also
been detailed elsewhere (see Chou and Voit, 2009 and references
therein). Among the advantages of power-law models, there are
two worth mentioning here. The first is the flexibility of power-
law formalism in approximating a multitude of (nonlinear) cellular
responses, which is the reason for its wide applicability in model-
ing general biochemical systems. The second advantage relates to
the direct one-to-one relationship between parameter values and
network structure (see Section 2 for further explanation). Hence,
the structural and kinetic identification in biochemical model con-
struction can be formulated as a combined parameter identification
problem.

Some of the rate constants and kinetic orders in power-law mod-
els can be set to zero from the available knowledge of network
structure. However, most parameters are usually estimated from
experimental data, among which dynamical data are most informa-
tive and of interest in this paper. Although there exist a large body
of works on the parameter estimation of power-law models, which
have been discussed at length in a recent review (Chou and Voit,
2009), this problem remains unsolved and has become the bottle-
neck in model identification within the BST. In other applications
of ODE modeling, parameter identifiability or more specifically the
lack of it has been shown to be an issue, in which there can be
many parameter combinations that reproduce the same dynamic
data (Chu and Hahn, 2009; Hengl et al., 2007; Zak et al., 2003).
The lack of parameter identifiability can lead to grossly inaccurate
parameter estimates, rendering the model useless for downstream
applications, such as process or strain optimization for the produc-
tion of certain metabolites. This identifiability problem seems to
plague the parameter estimation of power-law models (Vilela et al.,
2009), but parameter identifiability has not been addressed in this
context. This paper aims to fill this gap. In particular, existing and
newly developed methods are applied to investigate the parame-
ter identifiability in two previously published power-law models
of metabolic networks: lactate production in L. lactis (GMA) (Voit
et al., 2006) and E. coli metabolism (S-system) (Ko et al., 2006).

2. Methods

In this paper, model identifiability is defined as the ability to
uniquely determine model structure and parameters from a given
set of experimental data (Carson et al., 1983). Although this defini-
tion lacks mathematical rigor, we will show that it has a practical
relevance in the development of identifiability analyses. Also, the
“uniqueness” requirement can be relaxed when considering noisy

measurements. In power-law formalism, model structure, i.e. the
connectivity among states, can be inferred from the values of the
kinetic order parameters, where a positive value indicates a sub-
strate or a regulatory activation and a negative value implies a
regulatory inhibition. Therefore, model identifiability is equivalent
to parameter identifiability in this context.

The topic of parameter identifiability is well established in
mathematical modeling within science and engineering, includ-
ing biotechnology (Godfrey, 1986; Jimenez-Hornero et al., 2008;
Nikerel et al., 2008). In general, there are three key factors that influ-
ence parameter identifiability from experimental data, namely the
(1) degrees of freedom (DOF), (2) parameter correlation, and (3)
data noise. The DOF, which is calculated as the difference between
the number of parameters and data points (not counting replicates),
refers to the number of model parameters that can be changed
independently without affecting the outcome of data fitting. The
second factor describes the similarity among model parameters, in
which a high positive (negative) correlation between two parame-
ters indicates that these parameters affect the model simulation in
the same (opposite) manner. Thus, two highly correlated parame-
ters have a compensatory effect in which their values can be varied
together with little change in the simulation outcomes. Finally, the
third factor relates to how random noise contaminates true mea-
surement signals and thus decreases the information that is useful
for parameter estimation.

Generally, there are two types of parameter identifiability; the
first assumes noise-free data, which is referred to as structural
or a priori identifiability, while the second considers data quality,
referred to as practical identifiability. The first two of the afore-
mentioned factors are considered in a priori identifiability, while
practical identifiability takes into account all three factors. The
following sections present methods to study these identifiability
conditions. As power-law models are dynamic, the most useful
information for parameter estimation is naturally dynamical data,
i.e. time-series concentration data. The analysis of a priori iden-
tifiability is based on the sensitivity matrix following an existing
method (Yao et al., 2003). In addition, three practical identifiability
methods are developed and applied based on statistical analy-
ses of the parameter estimation problem. Although we focus on
power-law models, these analyses have applicability to general
ODE models.

2.1. A priori parameter identifiability analysis

A priori or structural identifiability analysis addresses the
uniqueness of the inverse modeling problem under the assumption
that the data are noise-free. The lack of a priori identifiability typi-
cally arises due to model over-parametrization. The term “a priori”
implies that the analysis can or should be done before an exper-
iment is carried out, whereas the term structural can be taken to
mean that the outcome should depend only on the model structure
(Godfrey, 1986). Structural identifiability in metabolic pathways
using the power-law formalism was previously studied by Sorribas
and Cascante (1994) in the situation where steady state data are
available for model structure determination. When considering
general dynamical models and data, global a priori parameter iden-
tifiability methods have been developed based on Taylor series
expansion, Lie derivatives or differential algebra, which have been
mainly applied to linear systems and simple nonlinear systems
(Jimenez-Hornero et al., 2008).

The method described below is based on the first order
derivatives of the model (measured) output with respect to the
parameters, also called the sensitivity matrix S (Ingalls, 2008;
Turányi, 1990; Varma et al., 1999). The sensitivity matrix reflects
how much changes in the parameter values will affect the output. If
the outputs have zero sensitivity with respect to a parameter, then
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