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a b s t r a c t

In a cognitive factory setting, product manufacturing is automatically planned and scheduled, exploiting
a knowledge base that describes component capabilities and behaviors of the factory. However, because
planning and scheduling are computationally hard, they must typically be done offline using a simplified
system model, and are thus unaware of online observations and potential component faults. This leads to
a problem: given behavior models and online observations of possibly faulty behavior, how likely is each
manufacturing process plan to still succeed? In this work, we first formalize this problem in the context
of probabilistic reasoning as plan assessment. Then we contribute a solution which computes plan success
probabilities based on most likely system behaviors retrieved from solving a constraint optimization
problem. The constraint optimization problem is solved using well-optimized off-the-shelf solvers.
Results obtained with a prototype show that our method can guide systems away from plans which rely
on suspect components.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

As the market demands for customized and variant-rich prod-
ucts, the industry struggles to implement production systems that
demonstrate the necessary flexibility while maintaining cost effi-
ciency comparable to highly automated mass production. A main
cost driver in automated production is the human workforce
needed for setup steps, the development of processes, and quality
assurance. These high labor costs can only be amortized by very
large lot sizes. For small lot sizes as found in prototype and highly
customized production, human workers are still unchallenged in
flexibility and cost. Therefore, to facilitate the emergence of mass
customization at prices only highly automated systems can
achieve, levels of flexibility similar to the flexibility of human
workers must be reached.

Future technical systems are expected to act robustly under
high uncertainty, reliably handle unexpected events, quickly adapt
to changing tasks and own capabilities. A key technology for the
realization of such systems is automated planning combined with
self-diagnosis and self-assessment. These capabilities can allow the
system to plan its own actions, and also react to failures and adapt
the behavior to changing circumstances. Cognitive architectures
try to achieve such capabilities for industrial applications by
implementing solutions inspired from human and animal cognitive
behavior [1]. Research within the German cluster ‘‘Cognition for

Technical Systems” (CoTeSys) [2] tries to understand human cogni-
tion to make its performance accessible for technical systems.

In a scenario of cognitive manufacturing, a factory generates the
manufacturing process plans for numerous individualized products
during night for manufacturing the next day. A factory knowledge
base, describing component capabilities and behavior, serves as
model basis for the factory’s intelligent capabilities such as planning.
During night enough time is available to generate complex plans.
Still, relevant parts of the knowledge have to be selected [3] from
the knowledge base, as planning/scheduling on the whole knowl-
edge base would be intractable. The question is: can it be guaranteed
that the plan works given the behavioral knowledge of the system?

Planning and scheduling finishes at a deadline the next day (e.g.
8 am). However, partial observations can be made after that dead-
line, especially during execution of the plans. In the light of this
new information, it might become clear that success for certain
plans cannot be guaranteed anymore (e.g., if a plan operates a com-
ponent intensely which has been observed to be prone to failure).

The two problems illustrated above lead to the same problem of
evaluating manufacturing process plans in the face of information
that was not available or not used for their generation. In the first
case, a sparse model without behavior knowledge was used due to
problem hardness. In the second case, it’s observations which
where not available at planning/scheduling time. In both cases,
planning and scheduling are complex tasks (even on the sparse
model), which prohibit quick reformulation of whole plans, only
slight modifications are possible.

In this work, we are interested in the probability of plan success,
i.e. that it achieves its goal, or plan failure. We want to provide a
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criterion upon which an AI decision component or a human oper-
ator can decide to (a) continue with a plan, (b) stop it because it
probably will not succeed or (c) gather more information. We call
the problem of computing this probability the Plan Assessment
Problem. In this work, we do not address planning and/or schedul-
ing problems. We assume a given cognitive architecture which
provides typical AI capabilities such as planning [4]. This work is
based on prior work presented in [5,6]. It combines concepts from
these works and extends them by (a) a formal definition of the plan
assessment problem as a probabilistic reasoning problem within
the domain of cognitive manufacturing and (b) elaborating ideas
on how focussed plan assessment models which model behavior
of multiple, different products can be created.

The rest of our article is organized as follows: in the next sec-
tion, we introduce our example scenario for the CoTeSys cognitive
factory. We then precisely analyse all aspects of the plan assess-
ment problem in Section 3 and discuss related work in Section 4.
In Section 5 we describe in detail the modeling formalisms used
to create planning and plan assessment models. Plan assessment
with hybrid discrete/continuous models based on hybrid automata
is shortly explained in Section 6. Then in Section 7 we show how
belief state approximations can be computed and introduce our
approach to estimating the success probability using soft-con-
straint optimization. Section 8 is concerned with our restricted
prototype implementation of plan assessment, followed by the
results obtained with it.

2. Metal machining and assembly example

Part of the CoTeSys cognitive factory test-bed is a customized
and extended Flexible Manufacturing System (FMS) based on the
iCim3000 from Festo AG (see Fig. 1b). The system consists of con-

veyor transports and three stations: storage, machining (milling
and turning), and assembly.

The following scenario will serve as basis for examples through-
out the article. In the cognitive factory, a planner creates plans for a
toy maze and a toy robot arm. The maze consists of an alloy base
plate and an acrylic glass cover fixed by metal pins (see Fig. 1a),
the robot arm (see Fig. 1c) consists of alloy parts, joints and servos.
The robot is configurable regarding the number of joints and their
orientation as well as in the choice of a manipulator. A single joint
consists of two metal brackets and a servo motor. In the example
laid out, some CNC (Computerized Numerical Control) cutting
operations are done on each of the brackets, later sets of two brack-
ets are assembled with a servo. Cabling is not considered in this
scenario and has to be done manually as a last step. A scheduler as-
signs the necessary resources. The two product plans, i.e. two se-
quences of (action, time)-pairs, look like shown in Fig. 4. A rough
visualization of the complete schedule is shown in Fig. 3.

Errors can be detected in the plant using a vibration sensor at
suspicious components. In our situation, the machining station is
suspicious, because its cutter can go blunt during operation. A
blunt cutter is very likely to break, leading to flawed products
(see Fig. 1a). However, not every vibration means that a compo-
nent is faulty. Some components generate random vibrations,
e.g., the assembly station. Furthermore, with some probability,
vibrations in one station can trigger signals in sensors of nearby
stations. In our example, the vibrations of the assembly station
and conveyor belts can trigger sensor signals of the machining sta-
tion sensor. The plan assessment must be able to cope with these
kinds of ambiguities. Our approach can deal with them by finding
most probable explanations for what happened in the past.

A vibration is detected at t2 ¼ 520 s, while the machining sta-
tion is cutting a bracket for the robot arm and the maze is being

Fig. 1. (a) Effects of cutter deterioration until breakage in machining. (b) The hardware setup used for experimentation, showing storage, transport, robot and machining
components. (c) The robotic arm product. Images �Prof. Shea TUM PE.
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