
Architectural paradigms for robotics applications

Michele Amoretti a, Monica Reggiani b,*

a Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Parma, 43100 Parma, Italy
b Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università degli Studi di Padova, 36100 Vicenza, Italy

a r t i c l e i n f o

Article history:
Received 12 June 2009
Accepted 5 August 2009
Available online 2 September 2009

Handled by Prof. I. Smith

a b s t r a c t

In recent years, several technical architectural paradigms have been proposed to support the develop-
ment of distributed and concurrent systems. Object-oriented, component-based, service-oriented
approaches are among the most recent paradigms for the implementation of heterogeneous software
products that require complex interprocess communications and event synchronization. Despite the
sharing of common objectives with distributed systems research, the robotics community is still late
in applying these research results in the development of its architectures, often relying only on the most
basic concepts.

In this paper, we shortly illustrate these paradigms, their characteristics, and the successful stories
about their application within the robotic domain. We discuss benefits and tradeoffs of the different solu-
tions with the goal of deriving some practical principles and strategies to be exploited in robotics prac-
tice. Understanding the characteristics, features, advantages, and drawbacks of the different paradigms is,
indeed, crucial for the successful design, implementation, and use of robotic architectures.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The technological development of robotics research will soon
lead to the marketing of robots that can play a key role in support-
ing people in their everyday tasks. Pursuing a specific objective
while dealing with a dynamic environment and ensuring a safe
interaction with human beings, requires a complex multifunctional
structure for robot control, where heterogeneous hardware and
software components interact in a coordinated manner. Addition-
ally, further requirements are being introduced by an increasing
number of projects [1,2] adding cognitive requirements while pre-
serving pervasive requisites of autonomous robotics design, i.e. the
capability to have a real-time interaction with the real world [3].

The robotics community has recently proposed several architec-
tures for the development of robot control software [4–9]. This in-
cludes the avoidance of monolithic development methodologies
since they are unable to deal with the problem complexity. Despite
the large number of significant proposals, there is still a lack of
common, suitable solutions that would allow the reuse of previous
efforts. The main reason for this failure is the difficulty of clearly
describing and formally defining a problem domain which is still
unclear in the field of multifunctional robots: for the same prob-
lem, different research projects still produce different specifica-

tions for its domain. This also holds for cognitive robotics
research where projects only share a common understanding of
cognition as the ability to think or reason about embodiment
worlds, but there are quite different assumptions about the repre-
sentation, organization, utilization, and acquisition of knowledge.
This has a huge impact on the final software architectures as it of-
ten prevents the exchange of software solutions developed by dif-
ferent research groups.

Even if the robotics community is still not in the stage of avoid-
ing the recreation of incompatible solutions, a plague which is
common to other software research fields, it would greatly benefit
from the advances and maturity reached by distributed technology
research. This research field is already converging toward a few
technical architecture paradigms, and mature implementations of
these ideas are freely available in the form of software middle-
wares supporting complex interprocess communication, event
synchronization, and data distribution. A thoughtful application
of these research results in the development of robotic software
architectures would, at least, alleviate the cost of re-invention of
core concepts and techniques for the control of distributed devices.
Nevertheless, their application to robotics research is still late,
often relying only on the basic concepts of the available
middlewares.

In this paper, we shortly introduce three technical architecture
paradigms that have been successfully exploited in the robotics
field (Section 2). Their characteristics and successful stories within
the robotic domain are discussed in detail in Sections 3–5. We dis-
cuss the benefits and tradeoffs of the different solutions with the
goal of deriving some practical principles and strategies to be

1474-0346/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aei.2009.08.004

* Corresponding author. Address: Dipartimento di Tecnica e Gestione dei Sistemi
Industriali, Università degli Studi di Padova, Stradella San Nicola, 3, 36100 Vicenza,
Italy. Tel.: +39 329 9860296.

E-mail addresses: michele.amoretti@unipr.it (M. Amoretti), monica.reggiani@u
nipd.it (M. Reggiani).

Advanced Engineering Informatics 24 (2010) 4–13

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i

http://dx.doi.org/10.1016/j.aei.2009.08.004
mailto:michele.amoretti@unipr.it
mailto:monica.reggiani@u nipd.it
mailto:monica.reggiani@u nipd.it
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


exploited in robotics practice. Understanding the characteristics,
features, advantages and drawbacks of the different paradigms is
indeed crucial for the successful design, implementation, and use
in robotic architectures. Finally, we present a set of guidelines with
an in-depth discussion about the influences and impacts of archi-
tecture paradigms on robotic applications to drive the design of
control software architecture for robotics projects (Section 6).

This paper focuses on the analysis of technical architecture par-
adigms and software strategies for their use in the robotics do-
main. A performance comparison of the final control software
architectures is outside of the paper’s objectives. Interested readers
can refer to other papers dealing with the comparison robotics
architectures [10,11] and to the middleware activity of the Rosta
project [12].

2. Architectural paradigms

The development of complex cognitive embodied systems is a
challenging task as it requires a collection of behavior control abil-
ities, including perception, manipulation, and learning. These abil-
ities have to work concurrently and have to collaborate through
the exchange of available knowledge. The design of intermodule
communication and event synchronization is therefore of main
importance during the development of the control software infra-
structure. Several design methodologies and architectural para-
digms for data communication have been proposed by the
distributed computing community. This section is a short review
that will introduce the evolution process that brought the develop-
ment of the three technical architectural paradigms discussed in
this paper.

Fig. 1 illustrates several abstraction layers, of increasing com-
plexity, for distributed applications. At least one paradigm lays
on each layer, i.e. a pattern or model defining the best design
practices.

At the lowest level, Message Passing is the fundamental para-
digm for distributed applications and provides an abstraction to
encapsulate the details of the network communication and the
operating system. Intermodule communications are based on send
and receive primitives that allow input/output in a manner similar
to the file I/O.

One abstraction layer consists of Message-Oriented Middleware
(MOM) and Remote Procedure Call (RPC), which are two of the
most prominent communication paradigms [13]. In the MOM par-
adigm, a message system serves as an intermediary among sepa-
rate, independent modules. The message system acts as a switch
for messages, allowing modules to exchange messages asynchro-
nously, in a decoupled manner. Using a Point-to-Point communica-
tion model, MOM forwards a message from the sender to the

receiver’s message queue. Compared to the basic message-passing
model, this paradigm provides the additional abstraction for asyn-
chronous operations. Their support with message passing would
have required low-level implementation through threads or child
processes. Another MOM communication model is Publish/Sub-
scribe which, at each message, associates a specific topic, task, or
event. Modules interested in the occurrence of a specific event
may subscribe to messages for that event. When the event occurs,
the process publishes a message announcing the event or topic and
the MOM message system distributes the message to all the
subscribers.

The second paradigm of this layer, the Remote Procedure Call
(RPC), allows distributed software to be programmed like conven-
tional applications which run on a single process. A Remote Proce-
dure Call causes a subroutine or procedure to be executed in
another address space (commonly on another computer on a
shared network) without the programmer explicitly coding the de-
tails for this remote interaction. The programmer, therefore, writes
the same code whether the subroutine is local or remote in respect
to the executing process.

An increasing request for modularity and abstraction is what
drove the development of the three architectural paradigms in
the last abstraction layer. The Distributed Object Architecture
(DOA) paradigm (Section 3) is based on the object oriented ap-
proach and is an improvement over the first attempts to provide
platform independent solutions for interprocess communication.
In particular, remote method invocation is the object-oriented
equivalent of Remote Procedure Calls, where the remote object
takes the role of the remote process. In this model, a process in-
vokes the methods in a (remote) object, which may reside in a re-
mote host. As with RPC, arguments may be passed along with the
invocation. A following step introduced the concept of software
components [14] created with the objective of promoting the reuse
of design and implementation efforts. The final objective of the
Component Based Architecture (CBA) paradigm (Section 4) is the
development of components, eventually from multiple sources,
that can be deployed according to customers’ needs, often evolving
during the project’s lifetime. A recent trend for the development of
modern large-scale distributed and mobile systems is calling for a
new solution that will be better able to support an automated use
of the available distributed resources. The idea of presenting soft-
ware as a service is at the base of the Service-Oriented Architecture
(SOA) paradigm (Section 5). The SOA has been recently introduced
to provide loosely coupled, highly dynamic applications.

The previously described paradigms address several needs in
abstraction granularity for the development of distributed appli-
cations. Another significant problem is to guarantee the reliabil-
ity and efficiency of the whole distributed system by choosing
the most scalable overlay scheme. The client/server scheme as-
signs asymmetric roles to the collaborating processes. One pro-
cess, the server, plays the role of resource provider, passively
waiting for request arrivals. The other (client) issues specific re-
quests to the server and awaits its replies. The peer-to-peer
(P2P) paradigm, envisions direct resource sharing among partic-
ipants having close capabilities and responsibilities. Whereas
the client/server paradigm is an ideal model for centralized
robotic applications, such as teleoperations, the peer-to-peer
paradigm is more appropriate for cooperative robotics, swarm
robotics, and ambient intelligence.

In the next section, we focus on high-level solutions for the
communication problem, introducing the basic characteristics of
the DOA, CBA and SOA paradigms together with some of the most
representative examples of their application in the robotics do-
main. This will lay the background that is required to motivate
the choice to apply the different paradigms when a new robotic
application must be developed.Fig. 1. Distributed architectural paradigms, at different abstraction layers.

M. Amoretti, M. Reggiani / Advanced Engineering Informatics 24 (2010) 4–13 5



Download	English	Version:

https://daneshyari.com/en/article/242238

Download	Persian	Version:

https://daneshyari.com/article/242238

Daneshyari.com

https://daneshyari.com/en/article/242238
https://daneshyari.com/article/242238
https://daneshyari.com/

