
Programming multirobot applications using the ThinkingCap-II Java framework

H. Martínez-Barberá a,*, D. Herrero-Pérez a,b

a Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain
b Department of Systems Engineering and Automation, University Carlos III of Madrid, 28911 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 16 June 2009
Accepted 10 August 2009
Available online 26 September 2009

a b s t r a c t

This paper presents a Java framework, ThinkingCap-II, for developing mobile multirobot applications,
which has been successfully used in indoor, automotive and industrial robotics applications. It consists
of a reference architecture that serves as a guide to make the functional decomposition of a robotics sys-
tem, a software architecture that allows a uniform and reusable way of organising software components
for robotics applications, and a communication infrastructure that allows software modules to commu-
nicate in a common way. A key aspect of this software architecture is that it allows code reusability by
high level abstraction and a uniform way of accessing the characteristics of the sensors. In order to show
the suitability of the framework, for both diverse complex platforms and multirobot applications, two
case studies are discussed. One is an autonomous car-like vehicle which is guided by a manned vehicle,
and the other an autonomous industrial vehicle which is member of a multirobot transportation system.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The development of complex robotics applications involves di-
verse areas with different needs, such as data acquisition, signal pro-
cessing, intelligent control, networking, etc. Large robotics projects
involving development teams require efficient collaboration of their
members. In the case of small or reduced development groups, leav-
ing aside the economic factor, this becomes even more critical, be-
cause the development can be extended over non-bearable
periods, and it is paramount to have fast prototyping and code reus-
ability. To allow for these, the abstraction, organisation and design of
the software components are mandatory. In addition, it is also nec-
essary to produce working, robust and reliable applications.

The software aspects of this issue have not been discussed in
depth by the robotics community [1], probably because it is tradi-
tionally a software engineering topic. Nevertheless, the need for
standard specifications that deal with the recurrent concepts and
requirements of the robot software development is certainly a
key issue, which would allow robotics software components to
be shared, distributed and/or reused. Thus, several recent papers
address robotics software surveys, analysis and comparisons (for
instance, see [2,3]).

Traditionally, robotics software has basically been the imple-
mentation of a functional architecture which was focused for a
specific problem or set of problems. In these cases, the software
was divided into modules depending on their functionalities (like

TCA [4], AuRA [5], 3T [6], BERRA [7] and Saphira [8]) with most of
them obviating the transparency in communications, portability
and code reusability. These architecture usually group the data
acquisition, the real-time reactive processing, and the computation
of actuators to perform certain actions in a single software module,
according to the real-time constraints of these applications.

Robotics frameworks focused on low-level problems, on the
other hand, aim to provide an abstraction of the robotics platform
(like Player/Stage, URBI, Open-R and OROCOS), which facilitates the
separation of robot control and real-time control of effectors, and
then the reusability of software upon this abstraction. The level
of abstraction usually depends on the complexity of the hardware
platform for which they are designed. Player [9] is intended to
command wheeled robots, proposing a mechanism for the data
to flow between sensor, processors and actuators. URBI (Universal
Robotics Body Interface) [10] is designed to command more generic
platforms (like humanoids, animal-like and wheeled robots) and
although complex commands can be written, its kernel is low level
in essence. Open-R (Open architecture for Robot entertainment) [11]
provides a common interface for object-oriented components to
facilitate the modularisation, communication, portability and de-
sign, and a layered architecture for hardware adaptation, system
services and applications. This framework has been used by quadru-
ped and biped entertainment robots of the Sony Company. OROCOS
(Open RObot COntrol Software) [12] proposes defining a generic robot
by the specification of components which are completely decoupled
of communications and, hence, control flow and data flow are estab-
lished outside of components. This framework is oriented to provide
the user with the necessary tools to assemble the global functional-
ity of the robot depending on the functionalities needed.

1474-0346/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aei.2009.08.011

* Corresponding author.
E-mail addresses: humberto@um.es (H. Martínez-Barberá), dherrero@um.es,

dherrero@ing.uc3m.es (D. Herrero-Pérez).

Advanced Engineering Informatics 24 (2010) 62–75

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate /ae i

http://dx.doi.org/10.1016/j.aei.2009.08.011
mailto:humberto@um.es
mailto:dherrero@um.es
mailto:dherrero@ing.uc3m.es
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


From the software point of view, it would be useful to define a
generic robot and the separation of the problems to be addressed.
Then it would be possible to build tools to allow for productivity
in the robotics development cycle (like MissionLab [13], and
URBI [10]).

In recent years there has also been an increasing trend in multi-
platform support, either in the development of the whole software
framework (i.e. TeamBots [14] written entirely in Java) or in allow-
ing clients developed in other programming languages, which can
be interpreted, scripted or compiled (i.e. both Player/Stage and URBI
support remote clients written in different programming lan-
guages like Java, Python, etc).

When faced with the development of robotics applications for
different domains, platforms, sensors and actuators using a re-
duced development team, as our research group does, productivity
is of paramount importance. In addition, if any of the develop-
ments is to become a commercial or industrial product, robustness
is also a must. We have summarised the important properties of
selected frameworks regarding the productivity and robustness
goals in Table 1. The Research column identifies the most relevant
base users in the research community. The Industrial column iden-
tifies which frameworks are intended to be used for commercial or
industrial applications, and what degree of industrial grade has
been reached. The Prototyping column evaluates the simplicity or
ease for fast prototyping, which is directly related to man-hours ef-
fort. The Language column shows the language for implementing
and using the framework. In some cases, there are available clients
for additional languages. The Data Flow column identifies if the
data flow is fixed at compilation time or can be configured at run-
time. The Functional column identifies which kind of functional
architecture the frameworks are related to, if any. Blank fields
mean that the column property is not applicable to the corre-
sponding framework.

Because we are concerned with productivity, fast prototyping is
a property that is considered more than necessary. URBI, TeamBots
and MissionLab provide good support for this, but only MissionLab
and URBI can be qualified as industrial grade. On the other hand,
general usability is assured by Player/Stage, Open-R and OROCOS,
but only at a platform level. In addition, Java multi-platform devel-
opment has become a standard feature in business, with many pro-
ductivity and development tools readily available. For this reason,
we have developed a Java software framework for robotics applica-
tions that tries to keep productivity and robustness as its main
goals, while adopting the many interesting features of the above-
mentioned frameworks.

This paper presents a software framework for developing auton-
omous robots applications in diverse domains, like laboratory ro-
bots, automotive and industrial vehicles. The main goal of the
framework is to allow a high productivity while obtaining robust
code, which is suitable for commercial or industrial applications.
Some important features of this framework are the modularisation
of functionalities, i.e. implementation of algorithms independently
of functional architecture, the flexible information exchange mech-
anism for communications, which facilitates the reconfiguration of
the functional architecture and the integration of new skills, and

the execution specified at runtime by configuration files, which al-
lows to customise the modules that are instantiated, the functional
architecture and the platform where it is running (hardware
abstraction). This Java framework has been successfully used in dif-
ferent applications like laboratory robots, soccer-playing robots,
industrial robots and autonomous vehicles.

The paper is organised as follows. The Section 2 describes the
characteristics and design criteria of the software robotics frame-
work, which is later used to control very different platforms. The
Section 3 analyses and discusses the most important features of
the proposed framework. The Section 4 describes two case studies:
an autonomous car-like vehicle guided by a manned leader, and a
team of industrial vehicles which are used to achieve transport tasks
in a cooperative way. Finally, some conclusions are presented.

2. The ThinkingCap-II framework

ThinkingCap-II (TC-II) is a Java framework for developing mobile
robot applications.1 It is a joint effort between the University of
Murcia, Spain, and the University of Örebro, Sweden, and it is based
on previous work on ThinkingCap [15,16] and BGA [17] architec-
tures. The framework consists of a reference cognitive architecture
(largely based on ThinkingCap) that serves as a guide to make the
functional decomposition of a robotics system, a software architec-
ture (partially based on BGA) that allows a uniform and reusable
way of organising software components for robotics applications,
and a communication infrastructure that allows software modules
to communicate in a common way, regardless of whether they are
local or remote.

2.1. Functional architecture

Although the TC-II framework is functionally architecture-free,
we have developed most of our applications, like the case studies
described below, following a functional architecture based on
ThinkingCap [16]. It consists of two-layer architecture (Fig. 1) for
controlling mobile robots, one layer for reactive processes and
the other for deliberative processes. It can be viewed as a stripped
down instance of the 3T architecture [6]. The blocks group the dif-
ferent functionalities present in typical mobile robotics systems
(navigation, perception, control and planning), in which sensing
and acting are a must. An important role is played by a centralised
data structure called Local Perceptual Space (LPS), taken from the
Saphira architecture [8]. It is a geometrically consistent robot cen-
tric space which consists of a collection of Local Perceptual Objects
(LPOs). These LPOs model the local environment of the robot, and
take into account the a priori information (map) and the currently
perceived information (sensors) in a coherent way.

This architecture has been implemented and used in different
types of robots and has shown good capabilities as an abstract
guideline to organise the software which has to be run in an imple-
mentation of the abstract model of a module of the framework.

Table 1
Summary of selected frameworks properties.

Research Industrial Prototyping Language Data flow Functional

Player Widespread C++/Clients
URBI Accademia Limited Excellent URBI/Clients Fixed FSM
Open-R RoboCup Full C++ Configurable
OROCOS EU Project Full C++ Configurable
TeamBots Limited Excellent Java Fixed Reactive
MissionLab Military Full Adequate C++ Fixed AuRa

1 Additional information can be found at http://robolab.inf.um.es/tc2.

H. Martínez-Barberá, D. Herrero-Pérez / Advanced Engineering Informatics 24 (2010) 62–75 63

http://robolab.inf.um.es/tc2


Download	English	Version:

https://daneshyari.com/en/article/242243

Download	Persian	Version:

https://daneshyari.com/article/242243

Daneshyari.com

https://daneshyari.com/en/article/242243
https://daneshyari.com/article/242243
https://daneshyari.com/

