
Bias and precision of estimates of genotype-by-environment interaction:
A simulation study

Panya Sae-Lim ⁎, Hans Komen, Antti Kause
Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands

a b s t r a c ta r t i c l e i n f o

Article history:
Received 17 May 2010
Received in revised form 7 September 2010
Accepted 13 October 2010

Keywords:
Breeding programme
Genetic correlation
Genotype by environment interaction
Optimal design
Population structure
Simulation

Re-ranking of genotypes across environments is a form of genotype-by-environment (G×E) interaction with
serious consequences for breeding programmes. The degree of such G×E interaction can be estimated using
the genetic correlation (rg) between measurements in two environments for a given trait. When rg is lower
than 0.8, G×E interaction is commonly considered to be biologically significant. Here a stochastic simulation
was used to study the impact of population structure on bias and precision of genetic correlation estimates
between two environments. Simulated populations resulted from a nested mating design (1 sire to 2 dams).
Simulated rg was 0.0, 0.5, or 0.8. A trait with heritability (h2) of either 0.3 or 0.1 in both environments was
simulated. Simulation results show that genetic correlation estimates are biased downward especially when
the simulated rg is 0.8, heritability is 0.1, and family size is less than 10. A downward biased genetic correlation
estimate incorrectly suggests the existence of G×E interaction. This can lead to the erroneous conclusion that
a multi-environment breeding programme is needed. The optimal design with the lowest mean square error
for rg for a trait with low h2 requires a large family size (20–25) and a low number of families (100–80 or 50–
40 for population size fixed to 2000 and 1000 animals, respectively). For traits with moderate h2, the optimal
family size is 10 with 200 or 100 families for population size fixed to 2000 and 1000, respectively. We also
studied the effect of selective mortality on G×E estimates. However, schemes with unequal family sizes due
to differences between families in survival produced similar results for the optimum design as schemes with
equal family sizes. Equal-family-size design can thus be used to determine the optimal design for estimating
G×E interaction. Our study can be used as a guideline for estimating a genetic correlation for practical
breeding programmes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Many breeding programmes distribute animal material across
diverse production environments, sometimes even at a global scale.
Selection within a nucleus broodstock may lead to lower-than-
expected genetic gains in other production environments when
genotype-by-environment (G×E) interaction exists but it is not
introduced in the selection criteria.

G×E interaction is defined as a phenomenon that genotypes
respond differently to an environment gradient (Falconer and
Mackay, 1996). There are two main types of G×E interaction: scaling
effects and re-ranking. A scaling effect means that the amount of
genetic variation in two environments differs. Re-ranking means that
ranking of genotypes changes across different environments (Lynch
andWalsh, 1998). Re-ranking in particular is a challenge for breeding
because genotypes in one environment are not necessarily the best
ones in other environments. Re-ranking across environments can be

estimated using a genetic correlation between measurements in two
environments for a given trait (Falconer, 1952). G×E interaction is
commonly considered to be biologically significant when genetic
correlation is lower than 0.8 (Robertson, 1959b).

In aquaculture, a number of studies on G×E interaction have been
conducted under diverse management practices. The published
studies on genetic correlations between environments have used
family sizes and family numbers ranging from tens to several hundred
(e.g. Sylvén et al. 1991; Fishback et al., 2002; Kause et al., 2003, 2004;
Saillant et al., 2006; Quinton et al., 2007; Dupont-Nivet et al., 2008;
Pierce et al., 2008; Vehviläinen et al., 2008; Khaw et al., 2009).

To accurately estimate a genetic correlation between environments,
an optimal design needs to be established; an experimental design
which produces a precise and unbiased result while using minimum
testing capacity. Enlarging population size typically increases the power
of a design but simultaneously increases costs. In contrast, too small
population size or suboptimal population structure (number of families,
family size, and mating design) may potentially result in biased and
inaccurate estimates. Furthermore, differences in family size caused by
differential survival or differences in parental contributions to thewhole
population size will result in unequal family sizes. The resulting
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population structure is unbalanced which may influence the bias and
precision of genetic correlation estimates.

To our knowledge, no study has been conducted to assess bias and
precision of estimates of G×E interaction. The present study describes
the use of a stochastic simulation to construct an optimal population
structure promoting precise and unbiased estimation of a genetic
correlation between environments. The simulations employed here are
divided into three scenarios. Firstly, various population sizes were
simulated. Secondly, varying combinations of family size and family
number were used to find an optimal population structure under a fixed
population size. Thirdly, in practice, an experimental design is uninten-
tionally challenged with between-family variation in survival leading to
anunbalanceddesign. Unequal family sizesmay result in larger sampling
variance compared to equal family sizes (Hammersley, 1949; Tallis,
1959). Therefore, this scenariowasused to study the influenceof unequal
family sizes on the bias and precision of the estimation.

2. Materials and methods

In the simulation, three different population structures were
constructed, and (co)variance components were estimated.

2.1. Population construction

The simulated population structure was a split-family design
with two environments, where the offspring generation had
trait records and their parents only contributed to the pedigree. In
each environment, phenotype of an individual was calculated as
y=0.5as+0.5ad+m+e, where as and ad are additive genetic values
of sire and dam, respectively, m is Mendelian sampling term, and
e is environmental effect. Additive genetic values were sampled
from a bivariate normal distribution of environments A and B:
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environments (σa,AB) determined the degree of family re-ranking, and
was sampled from a simulated value (described below). No environ-
mental covariance was simulated between the two environments
because each animal inhabited only one environment. The population
construction was done in R (R Development Core Team, 2008).

2.2. Simulated scenarios

A population was simulated with a genetic correlation (rg) of 0.8,
0.5, or 0.0 between environments. A value of 0.8 is often considered a
threshold value for G×E interaction to be significant for a breeding
programme (Robertson, 1959b), whereas genetic correlations of 0.5
and 0.0 mean that strong re-ranking occurs. A trait with heritability of
either 0.3 or 0.1 in both environments was used in all scenarios.
Number of sires, dams, and offspring were constructed following
three population design scenarios. For all scenarios, the mating design
was one sire mated to two different dams (paternal nested design).
The paternal nested mating designs are used, e.g. in GIFT and
Troutlodge breeding programmes.

2.2.1. Varied population size (scenario A)
Family size is one important factor that determines the amount of

bias, standard error andmean square error. Therefore, this scenariowas
to evaluate the impact of family size on precisions and bias. The
simulated population had a fixed family number of 100 but family size

ranged from 3 to 75 within each environment. Note that with the
increase of family size, also the population size increases, e.g. family size
of 3×100 families=300. The range of family sizes is given in Table 1.

2.2.2. Fixed population size (scenario B)
An experiment typically has a limit for the maximum number of

fish reared, tagged or genotyped. The results from scenario A showed
that estimates of rg were unbiased for traits with both low (0.1) and
moderate (0.3) heritabilities when population size was larger than
2000 (100 families×20 individuals). Therefore, the starting point for
this simulation was a fixed population size of 2000 in both
environments. In this scenario, both family size and family number
were varied. Given a fixed population size, this means that increasing
family size results in decreasing family number. The results from
population size of 2000 were compared to the bias and precision of
the rg estimates when simulating a fixed population size of 1000, i.e.
when the number of animals was decreased to 50%. Table 1
summarizes the used family sizes and number of families for
population sizes of 2000 and 1000.

2.2.3. Unequal family size (scenario C)
In this scenario, the effect of unequal family size on the bias and

precision of the estimate of rgwas studied. The initial population sizewas
2000 and survival was 50%, meaning that the population size at harvest
trait recording was reduced to 1000. To generate differences between
families in size, each individual was assigned a trait record for survival
(0=alive, 1=died). Survival was not correlatedwith the traits recorded
in two environments, and was not analysed as a correlated trait in the
genetic analyses. Survival was modelled as a binary threshold trait with
the following underlying liability scale phenotypic and genetic para-
meters. Phenotypic variance for survivalwas assumed tobeone, and thus
additive genetic variance is equal to heritability for survival (h2surv). To
generate different degrees of between-family variation in survival for the
population construction, three alternative sets of parameters were used
for survival: h2surv=0.00 and c2surv=0.3; h2surv=0.15 and c2surv=0.1;
h2surv=0.30 and c2surv=0.0, where c2surv is the ratio of variance for
common environment of full-sibs to phenotypic variance. These
represent realistic estimates for rainbow trout (Kanis et al., 1976;
Vehviläinen et al., 2008, 2010).

Scenario C was performed for a trait with h2 of 0.1 and 0.3 with a
simulated genetic correlation of 0.8 between two environments.
Results from scenario A show that this is the most difficult scenario to
estimate genetic correlation correctly.

2.3. Estimation of (co)variance components

The simulated data were analysed using a bivariate animal model
in which the same trait in two environments was treated as two
different traits. The model fitted was:

yij = μ i + aij + eij

where yij represents a traitmeasured in oneof two environments (i=1,
2) for an individual j (j=number of individuals); μ i is the overall mean
of the trait i; aij is the random additive genetic effect of individual j; and
eij is the random residual effect. Due to only one observation for each
individual, residual covariance was fixed to zero. Estimated genetic
correlation between two environments (r̂g), its standard error, and
heritabilities with their standard errors were estimated using restricted
maximum likelihood (REML) in ASReml software (Gilmour et al., 2006).
The (co)variance matrix was constrained to be positive definite.

2.4. Summarising output from the simulation

Each population structure alternative was simulated 500 times. For
each alternative, the results were summarized using: (i) average,
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