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The paper explored the Bayesian hierarchical model as a possible way to incorporate growth variability in
estimating shrimp growth function to enhance forecasting accuracy, using data from 16 growout ponds of a
commercial shrimp farm in Hawaii. Based on a dataset of 571 weekly growth observations, the Bayesian
hierarchical model is found to fit the data better than the simple nonlinear model that neglects growth
variability, with respect to the deviance information criterion, root mean squared error and mean absolute
percentage error. The Bayesian hierarchical model therefore could be a promising alternative for forecasting
shrimp growth in commercial aquaculture practice.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Forecasting growth of aquatic organisms bears great significance
for any aquaculture enterprise. Many statistical models have been
explored for modeling the growth of aquatic animals and plants.
These models vary in the cultured species, explanatory factors,
statistical methods employed, and the issues of interests. Shrimp is
one of the most studied crustaceans (Wyban et al., 1995; Araneda
et al., 2008). As for the statistical methods employed, various
regression models have been widely applied in modeling shrimp
growth (Tian et al., 1993). Yu et al. (2006) applied the neural network
technique; and Whiting et al. (2000) adopted the empirical Bayes
procedure. Recognized important factors influencing shrimp growth
include water temperature, water exchange rate, feed supply,
stocking density, oxygen concentration, salinity, and etc. (Leung and
Rowland, 1989; Leung et al., 1990; Wyban et al., 1995; Wang, 1998;
Jackson and Wang, 1998; Xiao, 1999; Tian and Dong, 2006). Focus of
shrimp growth modeling has recently been shifted from studying
growth performances in research experimental settings to commer-
cial settings (Yu et al., 2006).

Commercial shrimp farm environment can differ considerably
from that of research experiments. A commercial shrimp farm
typically operates many growout facilities simultaneously. Conse-
quently, the farmmanager has to predict the growth performances for
many growout units with limited observations in the beginning of the
growout season. The growth performance of these growout units (e.g.

ponds, pens, or raceways) usually vary and thus pose a particular
challenge for shrimp growth modeling. For example, the shrimp farm
in this study operated 40 growout ponds year round. While these
ponds were constructed with the same physical characteristics such
as depth and surface area, historical records indicated that growth
performances were different across ponds even under similar
cultivation conditions such as water temperature, stocking density,
and feeding rate. Ideally, it is best to trace the growth curve for each
pond individually. Unfortunately, sampling data from individual
ponds were generally not sufficient to accomplish this task. The
conventional solution is to fit a single growth curve with pooled data,
assuming the parameter values of the growth function are the same
for all the growout ponds. In other words, this approach neglects the
variability in growout ponds and predicts an identical growth for all
the growout ponds, given the same cultivation conditions.

In this paper, we explored the Bayesian method, in particular the
Bayesian hierarchical model, as an alternative method for forecasting
shrimp growth for commercial shrimp farms. We attempted to
improve growth prediction through incorporating the across-ponds
variability into the shrimp growth model1.

The Bayesian method is based on the Bayes theorem. The
mathematical representation of the Bayes theorem can be expressed
as PðH jDÞ = PðD jHÞPðHÞ

PðDÞ , where P(H|D) is the conditional probability of
the hypothesis H given evidence (data) D (i.e., the posterior
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1 The traditional frequentist method, for instance the random coefficients models,
could also account for growth variability when sufficient data are available. The
Bayesian method, on the contrary, is not generally restricted by the size of the data. It
is ideally suited for analysis with limited data and is theoretically preferred to the
frequentist method (Harvey, 1995).
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probability); P(D|H) is the “inverse” conditional probability of the
observed data D given hypothesis H (i.e., the likelihood function); P
(H) is themarginal probability of hypothesisH (i.e., prior) ; and P(D) is
the marginal probability of observed data D (i.e., normalized
constant). The likelihood function expresses the degree to which
the hypothesis H predicts the evidence (data) given the probability. In
other words, it postulates the linkage between the explanatory
variable and the response variable. The Bayes theorem provides a
mean to update the relationship between the explanatory variable
and the response variable through validating the data observed
against the prior (Draper, 1995). The application of the Bayesian
method however gains popularity only recently because of the
computational breakthrough known as the Markov Chain Monte
Carlo (MCMC) simulation.

For our specific purpose of admitting growth variability in a
shrimp growth function, we used the Bayesian hierarchical model, a
special class of Bayesian models designed for dealing with parameter
variability. Under the Bayesian hierarchical framework, the observa-
tions are assumed to be a distribution conditional on the explanatory
parameters. The explanatory parameters in turn are assumed to be the
distributions conditional on additional parameters, called the “hyper-
parameters”. The hyper-parameters characterize the distributional
patterns of the values of the corresponding explanatory parameters.
As illustrated in Fig. 1, a nonhierarchical model has a very simple
structure. The response variable W is stochastically dependent on a
deterministic term Mu and an error term δ. The basic idea of a
hierarchical model is that the deterministic term (Mu) may also
depend on some stochastic parameters (the hyper-parameters). In
many cases, the hyper-parameters themselves may also (or may not)
depend on some new parameters. Fig. 1 provides an example of a two-
tier hierarchical structure.

The power of the Bayesian hierarchical model lies in its ability to
modeling homogeneity and retaining its ability to characterize
specific individuals (Rossi et al., 2006). For the shrimp growth
model, the Bayesian hierarchical approach will construct a common
growth function for individual growout units and postulate that the
corresponding individual growth parameters come randomly from a
population distribution. Using this multiple levels (hierarchical)
structure, estimation of the unit-specific parameters could borrow
strength (information) from other growout units through the
assumed population distribution. The growth curve of individual
growout units therefore can be modeled, using limited unit-specific
data.

While the Bayesian method has been widely applied in admitting
individual variability in a variety of models (Gelman et al., 2003;
Helser and Lai, 2004; Zhang et al., 2009), including fishery (Alos et al.,
2010a; 2010b), we are not aware of its applications in modeling the
growth performance for aquatic organisms in aquaculture operations.
In this paper, we compared the predictive performance of the
Bayesian hierarchical model and the nonhierarchical (simple nonlin-
ear) model, using data from a commercial shrimp farm in Hawaii.

2. Materials and methods

2.1. Data

Shrimp growth could be affected by various factors such as water
temperature, feed supply, and stocking density (Leung and Rowland,
1989; Leung et al., 1990; Tian et al., 1993; Wyban et al., 1995). In this
study we modeled the shrimp growth function by relating average
shrimp weight with age of shrimp, water temperatures, density, and
feed supply. The data was provided by a commercial shrimp farming

Fig. 1. Illustration of the Bayesian nonhierarchical and hierarchical structure.

Table 1
Descriptive statistics of the data.

Variables Modeling dataset Validation dataset

Mean Min Max Median Mean Min Max Median

Weight(t−1) 13.38 0.70 24.60 13.91 12.66 1.38 23.53 13.33
Density 3.36 0.19 6.82 3.49 3.27 0.44 5.92 3.51
Feed 1.29 0.00 3.80 1.28 1.39 0.00 2.93 1.39
AM 24.06 21.74 27.14 24.04 24.24 21.74 27.14 24.22
PM 26.15 22.77 29.19 26.13 26.36 22.77 29.19 26.30
VAM 0.47 0.03 6.15 0.18 0.50 0.03 6.15 0.18
VPM 0.55 0.07 1.73 0.41 0.59 0.07 1.73 0.49
Age 12.84 1.00 36.00 12.00 11.91 2.00 30.00 11.00
Weight (t) 14.32 1.12 25.63 15.08 13.86 2.02 24.25 14.62
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