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h i g h l i g h t s

� The Gaussian model is employed to construct a novel battery model.
� The genetic algorithm is used to implement model parameter identification.
� The AIC is used to decide the best hysteresis order of the battery model.
� A novel battery SoE estimator is proposed and verified by two kinds of batteries.
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a b s t r a c t

State-of-energy (SoE) is a very important index for battery management system (BMS) used in electric
vehicles (EVs), it is indispensable for ensuring safety and reliable operation of batteries. For achieving
battery SoE accurately, the main work can be summarized in three aspects. (1) In considering that differ-
ent kinds of batteries show different open circuit voltage behaviors, the Gaussian model is employed to
construct the battery model. What is more, the genetic algorithm is employed to locate the optimal
parameter for the selecting battery model. (2) To determine an optimal tradeoff between battery model
complexity and prediction precision, the Akaike information criterion (AIC) is used to determine the best
hysteresis order of the combined battery model. Results from a comparative analysis show that the first-
order hysteresis battery model is thought of being the best based on the AIC values. (3) The central
difference Kalman filter (CDKF) is used to estimate the real-time SoE and an erroneous initial SoE is con-
sidered to evaluate the robustness of the SoE estimator. Lastly, two kinds of lithium-ion batteries are used
to verify the proposed SoE estimation approach. The results show that the maximum SoE estimation error
is within 1% for both LiFePO4 and LiMn2O4 battery datasets.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays the lithium-ion battery (LiB) is drawing a vast
amount of attention as the most important onboard energy storage
for electrified vehicle. To guarantee safe, efficient, and durable
operations, an effective battery management system (BMS) is nec-
essary [1–3]. However, due to the strong time-variable and nonlin-
ear characteristics, accurate estimation of state-of-charge (SoC) is
still remaining a challenge [4].

In terms of battery SoC estimation methods, large numbers of
research approaches have previously been proposed, each one hav-
ing its relative advantage, as reviewed by Ref. [5]. Due to the
closed-loop estimation ability and strong inhibiting effect on
noises, the Kalman filter (KF)-based SoC estimator is widely stud-
ied. Generally, researches are conducted through systems formed
by the Ampere–Hour integral method and other battery models
[6]. In considering that battery shows strong nonlinear characteris-
tic during its working process, the extended Kalman filter (EKF) is
usually adopted [7–16]. Ref. [17] studied the adaptive extended
Kalman filter and Ampere–Hour merging method, pointing out
that the meaning of AEKF as a state observer lies in: the AEKF
can precisely estimate the voltage and adjust the Kalman gain
according to the terminal voltage error between the measured val-
ues and the estimated values timely. The erroneous SoC estimation
brings bigger terminal voltage errors, which will in turn causes a
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strong Kalman gain and then compensates the SoC estimation in an
efficient closed loop feedback. However, the core content of the
EKF used for SoC estimation is to establish a reasonable battery
equivalent model and build a group of state equations.
Accordingly, this method is highly dependent on the prediction
precision of battery model and inaccurate battery model may
cause unreliable SoC estimation. To avoid the linearization error
of battery model and improve the model precision for SoC estima-
tion, the central difference Kalman filter (CDKF) is adopted and
which has the potential to estimate battery SoC with its nonlinear
behavior [18,19].

Nevertheless, the SoC defines the ratio of the residual active
material to the total original active material inside a battery. In this
way, the SoC indicates only the capacity state rather than the
energy state on which the battery application conditions are
dependent. Therefore, the state of energy (SoE) of the battery,
which provides the essential basis of energy deployment, load bal-
ancing, and security of electricity for the complex energy systems,
is a key parameter in the battery system. For pure EVs, the SoE is a
more critical index for the remaining driving range estimation,
energy optimization and management. Refs. [20–22] have done a
series work in battery SoE estimation. Their simulation results
agree well with the experimental results. However, these SoE esti-
mation approaches fail to achieve reliable predictions against dif-
ferent kinds of LiB cells. The trajectory of the battery model
parameter cannot be fully described with a limited number of
experiments. What is more, it needs to be validated under all of
its possible working conditions. It is evident that it is not practical
for EV, which has large number of battery cells in it. Thus, a data-
driven SoE prediction approach is a good choice to achieve desir-
able SoE estimates.

1.1. Contribution of the paper

A key contribution of this study is that a data-driven estimator
for battery state of energy is developed, thus the prone-error and
time consuming periodic calibration experiments could be
avoided. What is more, the performance of the estimator has been
verified and evaluated by different kinds of lithium-ion batteries
(LiFePO4 and LiMn2O4). In the proposed estimator, the Gaussian
model is employed to construct the battery model and the genetic
algorithm is used to implement model parameter identification. To
determine an optimal tradeoff between battery model complexity
and prediction precision, the Akaike information criterion (AIC) is
used to decide the best hysteresis order of the combined battery
model. It is noted that compared to EKF, the CDKF avoids the lin-
earization error of the battery model and improves the model pre-
cision for SoE estimation. Furthermore, results show that the
CDKF-based SoE estimator has a good robustness against erro-
neous initial SoE values.

1.2. Organization of the paper

The remainder of the paper is organized as follows: In Section 2,
the battery model is built and the genetic algorithm is used to
identify the model parameters. Section 3 describes the SoE defini-
tion, the CDKF-based SoE estimation model and the calculation
process for estimating SoE. The experiment setup and battery test
are introduced in section 4. Section 5 verifies the proposed data-
driven estimator with different kinds of batteries. In the final sec-
tion, some conclusions and final remarks are given.

2. Battery modeling and parameter identification

The batteries, with strong time-variable, nonlinear characteris-
tics in it, are further influenced by such random factors as driving

loads, operation environment, et al., in the application in EVs. The
real-time, accurate estimation of their state is challenging. Herein,
certain more advanced battery model should be constructed for
better simulating the complex working characteristics of different
kinds of batteries.

In this paper we propose the n-order hysteresis combined bat-
tery model, which can be expressed as following.
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where z represents battery SoE; the subscript k indices the sampling
moment. Ut represents the terminal voltage, iL represents the cur-
rent which is negative at charge and positive at discharge. a1;...;m,
b1;...;m, c1;...;m, d1;...;n and e1;...;n represent the fitting coefficients which
are related to battery parameters.

It is noted that the first term on the right side of Eq. (1) is
Gaussian model. The statistics performance oriented Gaussian
model is used to simulate different open circuit voltage behaviors
for different kinds of batteries, where m is usually less than 8 and
we use m ¼ 3 in this paper. The second term on the right side sim-
ulates the hysteresis effect of battery, where n represents the hys-
teresis order. Note that e0 ¼ 0 here.

The genetic algorithm is used to locate an optimal parameter
group for fitting coefficients and the objective function of the
genetic algorithm is built as follows [23]:
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where v̂g is the estimation value of the current population v at gen-

eration g. Ût;i is the estimation value of Ut;i at the data point i; N is
the experimental data length.

3. CDKF-based SoE estimator

3.1. State of energy definition

The SoE reflects the residual energy of a battery, and is defined
as the ratio of the remaining energy to the total available energy
[20,21]. In this study, SoE has been expressed by the following
equation [24,25].

zk ¼ zk�1 �
gDEa
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¼ zk�1 �
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where Dt represents the sampling time, DEa represents the variation
of battery energy during each sampling time, Ea represents the
available energy of battery, g denotes the energy efficiency of
battery.

Usually the calculation of battery SoC only considers the
charges flow into or out of the batteries, which has completely
neglected the energy losses of the electrochemical reactions and
internal resistances inside. These energy losses directly cause
changes of the terminal voltage and which will decrease faster
when battery is in discharge and increase slower when battery is
in charge. In fact, the terminal voltage is a very important index
of battery energy state. Herein, compared to the SoC of a battery,
the SoE is able to indicate the actual available energy when the
EV is running and more meaningful to manage the battery energy
system and predict the remaining driving range of the pure EVs. In
this case, the SoE is more practical than the SoC from the engineer-
ing point.
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