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h i g h l i g h t s

�We proposed metaheuristic optimization methods for energy systems.
� The proposed method, m-PSO can calculate the optimal solution quickly and accurately.
� The proposed method can find a solution 62,068 times as fast as previous method.
� The proposed methods can solve nonlinear and non-differentiable problems quickly.
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a b s t r a c t

Storage equipment, such as batteries and thermal energy storage (TES), has become increasingly impor-
tant recently for peak-load shifting in energy systems. Mathematical programming methods, used fre-
quently in previous studies to optimize operating schedules, can always be used to derive a
theoretically optimal solution, but are computationally time consuming. Consequently, we use meta-
heuristics, such as genetic algorithms (GAs), particle swarm optimization (PSO), and cuckoo search
(CS), to optimize operating schedules of energy systems that include a battery, TES, and an air-source heat
pump. In this paper, we used a GA, differential evolution (DE), our own proposed mutation-PSO (m-PSO),
CS, and the self-adaptive learning bat algorithm (SLBA), of which m-PSO was the fastest, and CS was the
most accurate. CS obtained the semi-optimal solution 135 times as fast as dynamic programming (DP), a
mathematical programming method with 0.22% tolerance. Thus, we showed that metaheuristics, espe-
cially m-PSO and CS, have advantages over DP for optimization of the operating schedules of energy sys-
tems that include a battery and TES.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, renewable power generators, such as wind tur-
bines (WTs) and photovoltaics (PVs), have been increasingly
installed in energy grids owing to feed-in tariffs and declining
installation costs. The number of installations of renewable power
generators is expected to increase [1]. Storage equipment has been
installed with WT or PV to avoid electricity grid fluctuation and
intermittency [2]. In addition, batteries have a significant role in
reducing operating costs in the building sector. Thermal energy
storage (TES) with combined heat and power (CHP) and heat pump

has a similar role in that sector. Although optimal operation is
important in maximizing their roles, it is a complex problem,
because there are many things to consider when optimizing their
operation, such as outdoor temperature, machine characteristics,
and the price of electricity. Therefore, it is important to study
energy system optimization.

There have been many previous studies of this topic [3–10].
Omu et al. [3] used mixed-integer linear programming (MILP) to
minimize annual investment and operating costs of a distributed
energy system. Basu and Chowdhury [4] used the cuckoo search
(CS) algorithm to optimize economic dispatch problems of genera-
tors on a microgrid. Chandrasekaran and Simon [5] used CS to solve
the unit commitment problem (UCP) and economic dispatch prob-
lem (EDP) using a fuzzy algorithm. Fazlollahi and Marechal [6] pro-
posed a hybrid method with an evolutionary algorithm and MILP
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to solve a multi-objective problem of energy systems that include
biomass energy. Fong et al. [7] applied a non-revisiting strategy to
a genetic algorithm (GA) and particle swarm optimization (PSO) to
minimize life cycle costs in centralized air-conditioning systems.
Lee and Kung [8] used PSO to minimize life cycle costs by optimiz-
ing the capacity and volume of melted ice of the ice storage in an
air-conditioning system. Moradi et al. [9] applied a hybrid method
combining PSO with fuzzy linear programming to optimize heat
production and electricity dispatch of CHP. Wang et al. [10] used
a GA to optimize the capacity and operation of combined cooling,
heating, and power (CCHP) in comparison to a separation produc-
tion system.

Although these previous studies provided effective optimiza-
tion methods, they dealt with energy systems without storage
equipment. On the other hand, the number of studies that have
considered storage equipment has increased in recent years [11–
33]. Although there are many optimization methods, we can divide
them into two categories, mathematical programming, such as
MILP and dynamic programming (DP), and metaheuristic opti-
mization or metaheuristics. MILP [11–20] and DP [21–23] are often
used in previous studies, because those methods can always derive
a theoretically optimal solution. However, their computation time
is very long, when many decision variables and discrete points are
included. In contrast, metaheuristics, such as neural networks [24],

the bat algorithm (BA) [25], GAs [26], PSO [26–31], CS [32], and
simulated annealing (SA) [33], first determine all variables at once,
and then change each decision variable using a specific method to
minimize (or maximize) an objective function. Thus, an optimal
solution can be obtained fast, even if the problem is complex.
Additionally, there are no limitations on the use of metaheuristics,
in contrast to mathematical programming, which has such limita-
tions as linearity, non-linearity, convexity, differentiability, and
continuity. Therefore, metaheuristics have substantial versatility
for optimizing nearly all functions. In this paper, we apply five
metaheuristics to optimize an operating schedule of energy sys-
tems and compare the results with those obtained using DP. The
metaheuristics used are GA, differential evolution (DE), CS, muta-
tion-PSO (m-PSO), developed by the authors to improve the origi-
nal PSO, and the self-adaptive learning bat algorithm (SLBA)
because of their efficiency.

2. Materials and methods

2.1. Energy system and load profiles

2.1.1. Modeling energy systems
We considered a simple energy system consisting of a battery,

an air-source heat pump (AHP), and TES, as shown in Fig. 1.

Nomenclature

acdt amount of charging/discharging of electricity at tth time
interval (kW)

acrt amount of storing/releasing of thermal energy at tth
time interval (kW)

c1 coefficient of returning to the past personal best posi-
tion of PSO

c2 coefficient of moving to the best position in all individ-
uals of PSO

Cb capacity of a battery (kW h)
CTES capacity of TES (kW h)
Dmax maximum demand in all time horizons (kW)
Dt

e electricity demand at tth time interval (kW)

Dt
c cooling demand at tth time interval (kW)

ect
AHP electricity consumption for operating an AHP at tth time

interval (kW)
ect

Pump1 electricity consumption for operating Pump 1 at tth
time interval (kW)

ect
Pump2 electricity consumption for operating Pump 2 at tth

time interval (kW)
ecoet electricity consumption for operating a battery and

meeting electricity demand at tth time interval (kW)
efb efficiency of charging/discharging of electricity (–)
efTES efficiency of storing/releasing of thermal energy (–)
ept price of electricity per kW h at tth time interval (yen/

kW h)
epoet price of electricity for operating a battery and meeting

electricity demand at tth time interval (yen/h)
epest price of electricity for operating an AHP and TES and

meeting cooling demand at tth time interval (yen/h)
f t

i frequency of ith individual at tth time interval
f min minimum value of frequency (=0.0)
f max maximum value of frequency (=2.0)
lossTES loss of energy of TES per an hour (–)
macd maximum amount of charging/discharging of electricity

(kW)
macrt maximum amount of storing/releasing of thermal

energy at tth time interval (kW)

max Pt
AHP maximum power output of an AHP at tth time interval

(kW)
Meant
����!

position vector of mean individual at tth time interval
n population size
nd number of dimensions
nc number of children
Pt

AHP power output of an AHP at tth time interval (kW)
pe assumed SCOP based on primary energy (=0.77)
r1; r2 random number with uniformly distribution
Rt

b rate of charging/discharging of electricity at tth time
interval (–)

Rt
TES rate of storing/releasing of thermal energy at tth time

interval (–)
St

b state of charge at tth time interval (kW h)
St

TES Stored thermal energy at tth time interval (kW h)
t time interval (=1 h)
time time horizon in each calculation period (=30 h)
v t

i

�!
ith velocity vector at tth time interval

w coefficient of inertia of PSO
xt

i

!
position vector of ith individual at tth time interval of
PSO and SLBA

xt
p

!
position vector of parent of DE

xpare
i

��!
position vector of ith parent of GA

xpare g����!
position vector of all parents’ center of gravity of GA

xchild
i

��!
position vector of ith child individual of GA

xPbestt
i

����!
vector of the best position found by ith individual at tth
time interval of PSO and SLBA

xGbestt
�����!

vector of the best position in all individuals at tth time
interval of PSO and SLBA

xt
d1

�!
; xt

d2

�!
position vector of differentiable individuals of DE

xtþ1
new

��!
position vector of a new individual of DE

xWorstt
�����!

vector of the worst position in all individuals at tth time
interval of SLBA

fi random number of a uniformly distribution with mean
0 and variance r2

f ¼ 1=ðndþ kÞ
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