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HIGHLIGHTS

« We present an agent-based model of residential solar photovoltaic (PV) adoption.

« Model integrates social, behavioral, and economic elements of agent decision-making.
« Real-world, large-scale integrated dataset used for model validation and testing.

« We study the importance of using disaggregated empirical data on model performance.
« Social and attitudinal components are critical for spatial and demographic accuracy.
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Energy technology adoption is a complex process, involving social, behavioral, and economic factors that
impact individual decision-making. This paper uses an empirical, geographic information system (GIS)-
integrated agent-based model of residential solar photovoltaic (PV) adoption to explore the importance
of using empirical household-level data and of incorporating economic as well as social and behavioral
factors on model outcomes. Our goal is to identify features of the model that are most critical to success-
ful prediction of the temporal, spatial, and demographic patterns that characterize the technology adop-
tion process for solar PV. Agent variables, topology, and environment are derived from detailed and
comprehensive real-world data between 2004 and 2013 in Austin (Texas, USA). Four variations of the
model are developed, each with a different level of complexity and empirical characterization. We find
that while an explicit focus only on the financial aspects of the solar PV adoption decision performs well
in predicting the rate and scale of adoption, accounting for agent-level attitude and social interactions are
critical for predicting spatial and demographic patterns of adoption with high accuracy.
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1. Introduction behavioral and social phenomenon such as decision heuristics,

anchoring, path-dependence (past experiences), risk aversion,

Demand-side behavior has important implications for local and
global emissions reductions [1-4] and for the future of the electric
grid [5-9]. In particular, a robust understanding of the rate and
pattern of consumer adoption of durable energy technologies is
critical for forecasting energy demand and emissions, as well as
for infrastructure planning and development [6,10-12]. Modeling
of energy technology adoption is particularly challenging, since
the nominal economics (price) of the technology is but just one
determinant of consumers’ likelihood to adopt [13-15]. Other
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trust-based information networks, and social norms are also quite
important in understanding decision-makers with bounded
rationality in general [16-18], and energy-related consumer deci-
sion-making in particular [2,14,15,19-22]. As such, the develop-
ment of analytical techniques that are able to appropriately
represent and model the bounded rationality of economic agents,
including the relevant social and spatial factors, is important for
better understanding of the technology adoption process and the
resultant emergent phenomena [23,24].

Agent-based modeling (ABM) has emerged as a methodology
that provides a suitable framework for explicitly modeling deci-
sion-makers with bounded rationality, their social interactions,
and the (physical and economic) environments surrounding them
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[23,25-28]. Energy and environment related consumer technology
adoption has been a particular area of growth in the development
and applications of ABM [29-44]. Because the underlying compo-
nents of the system and how they interact with each other are
modeled explicitly in ABM, the processes that lead to observable
emergent phenomena (such as the rate and pattern of adoption)
can be altered through simulation experiments, creating virtual
laboratories [24,45,46]. The depth, generalizability, and flexibility
of ABM make it applicable to a wide range of problems such as
the modeling of traffic patterns, growth of civilizations, land use
change, group dynamics, molecular self-assembly, electricity mar-
kets, and stock markets (see [24] for a more comprehensive
review). However, there are important challenges for ABM in con-
sumer energy technology adoption - and human-technical systems
in general - especially regarding the integration of theoretical ele-
ments and empirical patterns in the model structure, initialization,
and validation efforts. While the potential of ABM in enabling
detailed bottom-up modeling of technology adoption is quite
promising, ABM has been criticized on two important fronts [47-
50]: (i) agent decision rules in ABM are often over simplified or
even ad hoc, rendering connections to the broader theoretical con-
text difficult, and (ii) models often have inadequate empirical
emphasis on initialization and validation against real-world data
[51]. These factors have drawn increasing attention in the litera-
ture toward the importance of methodological rigor and the use
of adequately-resolved empirical data within ABM [49,52-54]. It
is now recognized in the literature that the extent to which the
strengths of ABM techniques offer an advantage over conventional
modeling techniques in policy analysis and system design is not a
given, rather it depends critically upon careful theoretical and
empirical underpinning of agent-based models [47,54].

This paper uses a theoretically and empirically grounded agent-
based model of residential solar photovoltaic (PV) adoption
(henceforth, the “solar ABM”) to analyze the importance of using
localized (disaggregated) empirical data and of including social
and attitudinal components in the adoption model in addition to
purely economic factors. Specifically, we develop four different
variations of the solar ABM - “Base-case”, “Simple Environment,”
“Random Fitted,” and “Economic Only” - to study residential solar
PV adoption through a thorough integration of economic valuation,
attitudinal evolution, and social interactions. Each of the four mod-
els has a different level of model complexity and empirical charac-
terization. Using a rich and comprehensive dataset between 2004
and 2013, the models simulate the adoption of residential solar
PV in the city of Austin (Texas, USA), which has a population of
approximately 900,000. Using the four variations of the solar
ABM we systematically examine the effect of progressively
increasing the empirical basis and the complexity of agent-based
models on model outcomes through external validation. We
emphasize that these are four different models, not just different
scenarios — as we discuss later, they vary in the basic model formu-
lation in important ways. We focus on aspects of model fitting and
validation, with the goal of identifying features of the solar ABM
that are most critical for accurately describing the solar PV adop-
tion process. We analyze the cost (in terms of predictive power)
of decreasing the empirical foundation and complexity of the
model.

We chose solar PV as the empirical test-bed in our study for two
reasons: (i) the growing importance and impact of solar PV in the
electric industry globally [55,56], and (ii) the relatively complex
decision-making process associated with solar PV adoption, which
offers a unique opportunity to study and quantify how economic,
attitudinal, and social factors impact individual behavior and lead
to emergent phenomena [57,58]. The two main contributions of
this paper are: (i) identification of variables and processes key to
the successful modeling of residential solar PV adoption using an

ABM approach, and (ii) detailed comparisons of different model
variations in order to quantify the value of increasing model com-
plexity and of using empirical distributions in terms of increased
accuracy of the model for predicting the rate and pattern of solar
PV adoption.

2. Material and methods

In this section we provide a conceptual overview of the model
components and how they fit together. All model components
were integrated in the R programming language and additional
supporting methods were written in Python. We also briefly
describe the integrated dataset and the validation procedures that
are used for the analysis in this study. A more comprehensive dis-
cussion of the underlying data and methodology is covered else-
where [59]. All simulations were run on the 10PF Stampede
Supercomputer at the Texas Advanced Computing Center (TACC),
utilizing 16 tasks per server node (each with two 350GF Intel
Xeon E5-2680 processors and one 1070GF Intel Xeon Phi SE10P
Coprocessor) on 100 nodes per batch (1 batch = 100 simulations).
Depending on the exact specification, each batch took between
20 and 35 min to execute.

2.1. Data

We use a granular household-level dataset including: (i) for
solar adopters (N = 2738): time-series utility solar program data
(rebate; price; system technical details; timing of adoption) and
survey data (attitude; motivators; perception; information seek-
ing; financial aspects)' and (ii) for all households (N = 173,466):
geo-location, home value, and environmental variables (roof size;
lot size; tree cover; elevation; slope; shading; insolation). The utility
solar program data for Austin ranges from 2004 to mid-2013.
Additional datasets including solar-adopter surveys, appraisal dis-
trict data, and light detection and ranging (LiDAR) data were overlaid
upon the solar program data to build the comprehensive and granu-
lar integrated dataset. The solar program data for each installation
were matched to geocoded addresses, allowing for the analysis of
solar adopter distribution over space and time. Each geocoded
address was matched to a single family residential parcel from the
Travis County Appraisal District, and a home footprint from the
City of Austin. These polygons were overlaid with household-level
home value and environmental layers in a geographic information
system (GIS) to define the agent attributes. Finally, solar adopter sur-
vey data were joined to the solar program data. These data streams
were combined to create agent and environment classes that were
rigorously grounded in real-world data and closely reflected the
actual population they were intended to represent, allowing for an
empirical ABM methodology [59].

2.2. Model design

The solar ABM used in this paper is a household-level agent-
based model able to generate the empirically observed temporal
and spatial patterns of the adoption of residential solar [59].
There is only one agent type - a household. The number of agents
in the solar ABM is 173,466: all the actual single-family residential
households in Austin, Texas as of mid-2013. The study period is
from 2004 to June 2013, during which the solar adoption level in
Austin grew from only N = 20 to 2738. Data from 2004 through
2007 is used for initialization, while 2008-mid-2013 is the simula-
tion period.

1 For the solar adopter survey data, N = 616 (22.5% response rate).
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