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h i g h l i g h t s

�We extend an energy demand model to investigate changes in behavioral and usage patterns.
� The model is capable of analyzing why demand behaves the way it does.
� The model empowers decision makers to investigate DSM strategies and effectiveness.
� The model provides means to measure the effect of energy prices on daily profile.
� The model considers the coupling effects of adopting multiple new technologies.
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a b s t r a c t

In this paper, we extend a previously developed bottom-up energy demand model such that the model
can be used to determine changes in behavioral and energy usage patterns of a community when: (i) new
load patterns from Plug-in Electrical Vehicles (PEV) or other devices are introduced; (ii) new technolo-
gies and smart devices are used within premises; and (iii) new Demand Side Management (DSM) strate-
gies, such as price responsive demand are implemented. Unlike time series forecasting methods that
solely rely on historical data, the model only uses a minimal amount of data at the atomic level for its
basic constructs. These basic constructs can be integrated into a household unit or a community model
using rules and connectors that are, in principle, flexible and can be altered according to the type of ques-
tions that need to be answered. Furthermore, the embedded dynamics of the model works on the basis of:
(i) Markovian stochastic model for simulating human activities, (ii) Bayesian and logistic technology
adoption models, and (iii) optimization, and rule-based models to respond to price signals without com-
promising users’ comfort. The proposed model is not intended to replace traditional forecasting models.
Instead it provides an analytical framework that can be used at the design stage of new products and
communities to evaluate design alternatives. The framework can also be used to answer questions such
as why demand behaves the way it does by examining demands at different scales and by playing What-
If games. These analyses are not possible with demand forecast models built on historical samples, simply
because, these forecast models and their level of accuracy are limited by their training data sets and can
hardly demonstrate variations that are not present in the historical data sets.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The residential sector is using almost one third of the total elec-
trical energy in the United States [1]. According to the Federal
Energy Regulatory Commission (FERC), much of the untapped
potential for reducing electricity use lies in residential behavioral
changes and modifications to traditional consumption patterns
[2]. This is particularly true considering that by 2030 Automatic

Metering Infrastructure (AMI) will be widely deployed across the
United States and that dynamic pricing will be widely available
or at least it will be an option [2]. At the same time, the residential
electricity demand is also on the verge of showing increased uncer-
tainty as new types of home appliances/electronics are introduced
and adopted. Traditionally, the major use of electricity in the U.S.
residential sector can be attributed to air conditioning (both space
heating and cooling), lighting, appliance/electronics, and water
heating [3]. The recent rapid adoption of new home appli-
ances/electronics, albeit many of them have become more energy
efficient, has introduced new variables into the residential electric-
ity demand. A good example is PEV with a fast sales growth rate
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which can potentially alter the residential energy demand behav-
ior [4], and could affect directly the US electrical grid in at least
two ways. First, as a new end-use it will heighten the average
demand profile. Second, it could pose significant challenges to util-
ity companies if people choose to recharge their PEVs during peak
hours. Without proper management strategies to reshape or curtail
such heightened demands, the utility companies may be forced to
build new power plants to meet these demands, which, in turn,
lead to less efficient use of energy resources.

Fortunately, devices that provide feasibility for utility
companies to influence consumer consumption behavior and for
householders to save energy and to take benefits of DSM strategies
are emerging and have seen rising applications in the residential
sector. These devices are commonly referred to as Programmable
Communication Devices (PCD). PCDs are designed to receive
real-time energy price and adjust consumption not only by
household specific conditions but also by the exogenous market
driven changes (e.g., electricity price). A common set of these
devices include, but are not limited to, Intelligent Thermostats
(PCDITÞ, Price Responsive Thermostats (PCDPRTÞ, Smart Electric
Plugs (PCDSEPÞ, and Automated Dimmer Switches (PCDADSÞ. These
devices have the potential to shift or curtail energy consumption
and contribute to the development of energy efficient behaviors.
But when the adoption of these devices is coupled with the
introduction of new loads such as those from the PEVs, there is still
very limited understanding of how they interact and influence
each other, and of their collective impacts on the residential energy
demand. Furthermore, to design appropriate DSM strategies,
energy demand consumption models need to be developed to
simulate different scenarios for energy users.

This research aims at developing a high-resolution residential
energy demand model to gain better understanding of how
different residential electricity demand patterns emerge with the
emergence of new loads, such as PEVs, the adoption of new
technologies, and the implementation of DSM strategies in terms
of price responsive demand.

2. Review of energy demand models

In a deregulated market, demand forecasting is vital for the
energy industry. Forecasting models are used to set electricity
generation and purchasing, establish electricity prices, switch
loads and plan for infrastructure development [5]. Demand fore-
casting can serve short-term and long-term goals. Short-term fore-
casting plays a very important role in operating functions such as
energy transactions, unit commitment, security analysis, and eco-
nomic dispatch [6]. On the other hand, long-term forecasting
focuses on the role of policy formulation and supply capacity
expansion. Long-term forecasting tries to predict consumption
behavior changes under the influence of adoption of new technol-
ogy or changes in policies for energy use. Short-term and long-
term forecasting often requires different modeling approaches.
More specifically, short-term forecasting usually employs a top-
down approach, while for long-term forecasting, a disaggregated
bottom-up approach is often used. The top-down approach treats
individual sectors as energy sinks and is not concerned with
individual end-uses. The bottom-up approach, on the other hand,
identifies the contribution of each end-use towards aggregate
energy consumption.

In the context of residential energy consumption, both
top-down and bottom-up models have been developed to model
and predict residential energy demand. For example, a few studies
utilized historic aggregate energy values and regressed the energy
consumption of the housing stock as a function of top-level
variables such as macroeconomic indicators (e.g. gross domestic
product, and inflation), energy price, and general climate [7,8].
The bottom-up approaches extrapolate the estimated energy
consumption of a representative set of individual houses to the
regional and national levels [8]. There are two types of models used
in the bottom-up approach: statistical and engineering models.
Statistical models apply a variety of statistical techniques to
regress the relationship between end-uses and energy consump-
tion. Techniques such as regression [9,10], conditional analysis

Nomenclature

Index
d index for day of week; d 2 f0;1g
U index for PEV state; U 2 f1;2;3g
i index for household; i ¼ 1 . . . I
j index for end use j 2 fSpace Heating & Cooling

SH&SCð Þ;Water Heating ðWHÞ;
Lighting ðLÞ;Cold Appliances ðCAÞ;Activities ðAÞ;PEVg

r index for occupant; r ¼ 1 . . . R
t index for time of day; t ¼ 1 . . . T

Variables and parameters
APCD PCD adoption
APEV PEV adoption
AR acceptable light level
CAPPEV PEV electric storage capacity
CCt cost associated to charging PEV
CHt PEV electric storage charge
CHR PEV electric storage charge rate
CPair air specific heat capacity
DCHt PEV electric storage discharge
DF daylight factor; ratio of internal light level to external

light level
DHR PEV electric storage discharge rate
ELj energy load associated to j-th end-use

EP electricity price
FR flexible lighting level range
K Heat transfer rate with outside
LUXAL needed artificial light
LUXIN illuminance due to daylight at a point on the indoors

working plane
LUXOUT outdoor illuminance on a horizontal plane from an

unobstructed hemisphere of overcast sky
ma Air mass
m _HVAC air mass flow rate
MCI number of Monte Carlo iterations
MDH miles driven per hour
MPSL minimum percentage of storage level
NLUX indoor comfortable light level
O% active occupancy percentage
pSnSm

probability of transition from Sn to Sm

Pspecific buildings’ specific heat loss rate
Sn state of Markov chain; n ¼ 1 . . . N
SOC state of charge
SPLB&UB thermostat set-points (lower and upper bound)
Ta Internal temperature
TELi

d total energy load profile of the i-th household
THVAC HVAC supply air temperature
TSnSm transition matrix
T1 ambient air temperature
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