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h i g h l i g h t s

� Quadratic equations are employed to determine the fuel-rate.
� QP and SA methods are used to determine battery and engine-on power.
� Simulation shows that the proposed algorithm can reduce fuel consumption.
� The battery state of health is taken into account to extend the application.
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a b s t r a c t

In this paper, an energy management strategy is proposed for a series plug-in hybrid electric vehicle. A
number of quadratic equations are employed to determine the engine fuel-rate with respect to battery
power. The problem is solved by using quadratic programming and simulated annealing method together
to find the optimal battery power commands and the engine-on power. The influences induced by the
inertias of the engine and generators are analyzed to improve the calculation precision. In addition,
the state of health of the battery is taken into account to extend the application of the proposed method.
Simulations were performed to verify that the proposed algorithm can decrease fuel consumption of
plug-in hybrid electric vehicles.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, plug-in Hybrid Electric Vehicles (HEVs) have attract-
ed considerable attention due to the advancement of both Electric
Vehicles (EVs) and HEVs. Plug-in HEVs can be powered by an
internal combustion engine (ICE) or an electric motor together an
energy storage system, such as a battery pack [1,2]. In addition,
the battery can be charged from the power grid, thereby providing
an all-electric driving range (AER). For a plug-in HEV, its user
always prefers to use the stored electricity to power the vehicle
first, since the price and the economy of the electricity are more
competitive than gasoline. A low cut-off threshold can explain
the maximum discharge energy of the battery. This threshold can
be measured by the state of charge (SOC), which presents the
percentage of the available battery capacity over the nominal capa-
city [3]. Before the SOC reaches the predetermined threshold, the

vehicle is only powered by the battery – a process called charge
depletion (CD) mode. After the SOC reaches the cut-off threshold,
the vehicle is powered by the engine and the battery together –
referred to as charge sustaining (CS) mode [4]. The CD/CS mode
is the easiest and most direct way to realize energy management
in a plug-in HEV; however, this method can only partially optimize
the fuel economy by properly determining its control parameters,
since it does not globally consider the energy distribution opti-
mization in a certain driving trip. This method can be further
improved with the help of modern intelligent transportation sys-
tem (ITS) and the intelligent energy management strategies [5].

The energy management for plug-in HEVs can be regarded as a
stochastic optimization problem. Provided that all the driving
information is known before the trip starts, the optimal energy
management can be obtained with the targets of improving fuel
economy [6], reducing emissions [7], and decreasing the overall
cost in view of the prices of electricity and fuel gasoline [8], etc.
This has prompted many researchers to attempt to optimize the
energy management by applying various control algorithms, such
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as rule-based methods [9,10], optimal theory [11–16], artificial
intelligence methods [14,15,17–24], and analytical methods. A
comparative study for energy management of HEVs is proposed
in [25,26] which classifies all the methods into two main classes:
(1) rule-based control, and (2) optimization approach control.
Rule-based methods [9,10] are simpler, easier to apply, and more
reliable than optimization approach control methods, and they
have been widely adopted by vehicle manufacturers. However, it
is difficult to find an optimal solution only based on the rules,
and sometimes it can be very complex. Methods based on dynamic
programming (DP) [17,20,22,23,27,28] and Pontryagin’s Minimal
Principle (PMP) [5,29,30] occupy considerable percentages among
all the control methods due to their claims of finding the global
optimal solution. However, DP suffers from the computation com-
plication, which is referred to as the ‘‘curse of dimensionality,’’
while PMP involves solving a complex Hamilton function that is
constrained by the boundary conditions and derivation of the vari-
ables [29]. Some adaptive optimal control strategies are also pro-
posed without knowing the detailed trip information [31].
Quadratic programming (QP) [32] and convex optimization based
methods [33] bring much attention by researchers, provided that
the driving conditions can be known in advance. Equivalent con-
sumption minimization strategy (ECMS) [11,21,34] is also a popu-
lar control strategy which translates the global optimization into
local minimization. For a plug-in PHEV, it becomes difficult to
apply optimally for different driving conditions. Artificial intelli-
gent methods, such as neural networks (NN) [13], fuzzy logic
[17], genetic algorithm (GA) [32], particle swarm optimization
[26,35], and the simulated annealing (SA) method [5], have all been
successfully applied to improve the energy management. NN
[12,13] methods require sufficient data to train all the possible
combinations of the road conditions. Fuzzy logic [17] can only
obtain an approximately optimal result; in addition, considerable
effort is needed to build the fuzzy logic table. GA [32] is time-con-
suming because the algorithm must complete a series of actions
that include crossover, mutation, and elite selection. Analytical
methods [36–38], and the model predictive control method [39]
are also candidates for improving energy management of plug-in
HEVs. In [36], the energy management strategy is stated by a pair
of parameters which define the battery’s optimal power and the
engine-on power threshold. The research objects can be classified
into series plug-in HEVs, parallel plug-in HEVs, power-split plug-
in HEVs [2], as well as some particular structures, such as the
Chevy-Volt [25,40] and the Honda Accord [41].

In this paper, the research target is a series plug-in HEV [42],
whose powertrain structure is shown in Fig. 1. It can be observed
that the engine is totally separate from the driving train, and thus
cannot power the vehicle directly. Obviously, the vehicle is a sys-
tem with two degrees-of-freedom, which brings certain com-
plexities to splitting the energy distribution, compared with
splitting the energy distribution in a vehicle with only one
degree-of-freedom, such as a parallel HEV with a fixed gear ratio.
Consequently, the developed algorithm in this paper can be also
applied to a parallel plug-in HEV or a power-split plug-in HEV.
To simplify the problem, a novel method is proposed herein to
transform the degrees-of-freedom from two to one, as detailed in
Section 2. Quadratic equations are then introduced to build the
nonlinear relationship between the engine fuel-rate and the input,
i.e., the battery power. Then, given the vehicle trip speed and pow-
er demand, the quadratic programming (QP) method [32] and the
SA method are introduced to find the global optimal solutions,
including battery power and engine-on power. The interior-point
method is applied to solve the QP problems. Compared with the
DP based methods [13,17], the QP methods needs less time to fin-
ish the energy distribution without influencing the optimization
results. The SA method is also faster to find an quasi-optimal
engine-on power than neural network method [12,13,43] and
genetic algorithm [32]. During the process of calculating the power
demand, the influences induced by the inertias of the engine and
generator are considered in order to improve the calculation preci-
sion. In addition, a battery management system (BMS), which
monitors and oversees the battery pack, can provide detailed bat-
tery information, such as SOC [3], state-of-health (SOH) [44], and
other related information to the vehicle controller [45]. The SOH
can reflect the maximum available energy stored in the battery
pack, which varies with temperature and battery degradation.
Here, the SOH is also added into the controller to provide more
considerations to extend the application of the proposed method.
Finally, simulations are performed to verify the improvements of
the proposed method.

2. Vehicle driveline analysis and simplification

As shown in Fig. 1, the vehicle consists of an engine, a generator,
a battery pack, and a motor. These parameters are briefly summa-
rized in Table 1. The maximum engine power is 60 kW, and the
nominal voltage and rated capacity of the battery are 260 V and
41 Ampere-hour (Ah), respectively. The maximum motor power
is 62 kW. Based on Fig. 1, the fuel consumption can be calculated,

F ¼
Z ttotal

0
mf dt ð1Þ

mf ¼ f ðTe;weÞ ð2Þ

where mf is the fuel-rate calculated by engine speed we and engine
torque Te, and F is the total fuel-consumption. In order to calculate
mf, the vehicle powertrain should be analyzed in detail to find
which variable can regulate we and Te. From Fig. 1, based on the
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Fig. 1. Powertrain structure of a series plug-in HEV.

Table 1
Vehicle specifications.

Type Power-split plug-in HEV

Vehicle mass 1925 kg
Drive type Forward wheel drive
Lithium-ion battery Rated capacity 41 Ah
Engine Maximum power 88.3 kW
Motor Rated power 62 kW
Generator Rated power 45 kW

Maximum power 75 kW
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