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h i g h l i g h t s

� The fuel cost with valve-point effect is used.
� Optimal thermal schedules for all case studies are obtained and saved into a matrix.
� The surrogate values matrix is used during the hydrothermal optimization.
� Hydrothermal scheduling is solved by considering constraints and final reservoirs state.
� The satisfied 24-h system demand is obtained by using a new DE architecture.
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a b s t r a c t

This paper present short-term combined economic and emission hydrothermal optimization, addressing
total fuel costs and emissions minimization. This paper uses the fuel cost function with valve-point effect,
which increases the degree of optimization problem difficulty. The optimal balance between the
addressed objectives, that conflict with each other, can be obtained with appropriate hydro and thermal
generation schedules. A surrogate differential evolution is applied in order to satisfy 24-h system demand
and final states of hydro power plant reservoirs by minimized total fuel costs and emissions. This paper
proposes a novel master–slave model optimization algorithm, where the optimal thermal schedules are
obtained within the slave model. The data obtained from the slave model are saved into a matrix, which
serves as a surrogate model for a master model, where the hydrothermal optimization with all objectives
and constraints is conducted by using a parallel self-adaptive differential evolution algorithm. In order to
show the effectiveness of the proposed method, different case studies are used: economic load schedul-
ing, economic emission scheduling, and combined economic emission scheduling. The proposed method
is verified on a model consisting of four hydro power plants and three thermal power plants.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrothermal optimization is a task where the main purpose is
to satisfy system demand and simultaneously satisfying other sys-
tem requirements by spreading its production between hydro
power plants (HPP) and thermal power plants (TPP). The optimiza-
tion process framework for hydrothermal scheduling can be
divided into three main categories; short-term, middle-term, and
long-term optimization [1]. The short-term hydrothermal optimi-
zation task [2] is used for scheduling time of up to 1 week, the
medium term [3] for scheduling time of up to 2 years, and long
term optimization [4] for scheduling time of longer than 2 years.

This paper focuses on solving the 24-h system demand using
1-h time steps [2]. The optimization process is carried out for three
case studies; economic load scheduling (ELS), economic emission
scheduling (EES), and combined economic emission scheduling
(CEES). The ELS case, extended by taking the start-up and shut-
down costs into account, is also found in scientific literatures as
a unit commitment problem (UCP) [2,5–8]. In the scientific litera-
ture, the optimization ELS case is likewise conceived into economic
load dispatch (ELD) [9–12].

The cost function for each thermal unit used during the optimi-
zation process is usually combined as a quadratic function without
including valve-point effects [13–15], which brings some inaccura-
cies into the function results. The generator cost functions are
modeled from the valve-points obtained during the ‘‘heat run’’ test.
To obtain these valve-points, the input and output data are mea-
sured slowly varied through generator operating region [13].
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The wire drawing effects, occurring as each steam admission valve
in the turbine starts to open, produce the rippling effects on the
unit curve [13]. In order to take these valve-point effects into
account, the sinusoid contribution must be added to the cost func-
tion. Such a cost function then increases the degree of the optimi-
zation problem’s difficulty. The hydrothermal optimization process
with fuel cost function using valve-point effect is therefore known
as a large-scale, dynamic, nonlinear, and non-convex optimization
problem [7,16].

The production from fossil fuel releases different contaminants
into the atmosphere. The atmospheric pollution has inter alia caus-
ing global warming [17] at the end. Behind the fact that power gen-
eration in today’s power market should meet cost-effective energy
production, it should also deal with reducing contaminants into
the atmosphere. In this context, the motivation behind this paper
was to optimize production from hydrothermal units in such a
way to satisfy system demand by minimizing not only total fuel
costs, but also its emissions. The costs functions include TPPs fuel
costs, since the power generation from HPPs typically has negligi-
ble direct costs [18].

Over recent years’ different optimization methods and tech-
niques have been proposed to solve this hydrothermal optimiza-
tion problem [19]. Methods are generally classified into two
groups; deterministic and heuristic methods [20]. Deterministic
methods include methods which arrive at the same solution
through the same sequence of solutions, such as Lagrangian relax-
ation [21] and Benders decomposition-based method [6], mixed-
integer programming [22–24], dynamic programming [25], and

linear programming [26]. The second group’s methods, where the
solution is built piece by piece, or where the solution from a previ-
ous step is used to find a better solution, belong to the heuristic
methods. These methods include Particle Swarm Optimization
(PSO) [27,28], Genetic Algorithms (GA) [10,29,30], Evolutionary
Programming (EP) [17,31], and Differential Evolution algorithms
(DE) [16,20,32,33].

Niknam et al. [6] proposed a new formulation based on benders
decomposition approach for solving the UCP problem. The problem
is decomposed into a master problem and a sub-problem. Li et al.
[34] developed a model and technique for solving the combined
hydrothermal UCP problem by a decomposition and coordination
approach. Borghetti et al. [35] also successfully solved hydrother-
mal UCP problem by using lagrangian relaxation and assuming a
linear hydro system model.

Rebennack et al. [36] present a modeling approach for green-
house gas emissions quotas incorporated into a stochastic dual
dynamic programming algorithm. The objective is the minimiza-
tion of expected operational costs of the system over whole time
interval and taking into account emission quotas. However, if
emission quotas are exceeded, the additional fees must be paid.

In [17], the evolutionary programming technique is used for
solving a short-term CEES problem. Mandal and Chakraborty [32]
used a DE algorithm for solving a short-term CEES problem. They
pointed out the importance of properly selecting the DE control
parameters. In this paper, the DE algorithm uses self-adaptive con-
trol parameters. Sun and Lu [27] proposed an improved quantum-
behaved PSO for short-term hydrothermal ELS, EES, and CEES case

Nomenclature

Parameters
ei,t natural inflow to hydro plant i in hour t
Vi,max maximal storage of reservoir i
Vi,min minimal storage of reservoir i
T number of hours of the scheduling period
Vi,T desired storage of reservoir i in T-th hour
pSD,t system demand in hour t
Phi,max maximal output power of hydro plant i
Phi,min minimal output power of hydro plant i
Psi,max maximal output power of thermal plant i
Psi,min minimal output power of thermal plant i
Qi,max maximal water discharge of hydro plant i
Qi,min minimal water discharge of hydro plant i
Ih total number of hydro power plants
Is total number of thermal power plants
NmaxFeval maximum number of evaluation function calls allowed

during an evolutionary run
D number of parameters to be optimized during an evolu-

tionary run
CR crossover control parameter
NP population size
NPmin minimal population size
F difference amplification factor
Fl lower limit of difference amplification factor
Fu upper limit of difference amplification factor
Gc epsilon constraint control generation threshold
zmax number of population size reductions
d number of inequality constraints
m number of equality constraints
e equality constraint radius (level)
Cz constraints relaxation reduction speed

dift difference between system demand and hydro power
plants production in hour t

dig the resolution of digit-precision values in the pre-com-
puted thermal power surrogate model

post position vector in hour t
j, w, n, w weights for objectives

Variables
qi,t discharge of hydro plant i in hour t
si,t water spillage by reservoir i in hour t
vi,t storage of reservoir i in hour t
phi,t power generated by hydro plant i in hour t
psi,t power generated by thermal plant i in hour t
G denotes generation counter value along algorithm itera-

tions
Gz generation in which to perform population reduction
m0 initial mean constraint violation per population
xi,G optimization parameters values of i-th vector in gener-

ation G
ui,G i-th trial vector in generation G
Ci,t fuel cost for thermal power plant i in hour t
TC total fuel cost for thermal power plants production
Ei,t emission for thermal power plant i in hour t
TE total emission for thermal power plants production
nm number of matrix elements in each row
cfx correction factor
gi i-th inequality constraint function
hj j-th inequality constraint function
Gi violation of i-th equality constraint
Hi violation of i-th inequality constraint
f single objective function
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