

Available online at www.sciencedirect.com

Aquaculture

Aquaculture 253 (2006) 204-211

www.elsevier.com/locate/aqua-online

Cloning, expression and antimicrobial activity of an antimicrobial peptide, epinecidin-1, from the orange-spotted grouper, *Epinephelus coioides*

Zhi-Xin Yin^a, Wei He^a, Wei-Jian Chen^a, Jiang-Hui Yan^a, Jun-Ning Yang^a, Siu-Ming Chan^b, Jian-Guo He^{a,*}

^a State Key Laboratory for Biocontrol, School of Life Sciences, Zhongshan University, 135 Xingang Road West, Guangzhou, 510275, PR China ^b Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China

Received 26 September 2005; accepted 2 October 2005

Abstract

Outbreaks of infectious diseases have caused huge losses in the fish culture industry. The production of antimicrobial peptides has been identified as a major defense mechanism against infections. A cDNA encoding an antimicrobial peptide was isolated from the leukocyte cDNA library of orange-spotted grouper, *Epinephelus coioides*. The predicted 67-amino acid prepropeptide, named epinecidin-1, consists of three domains: a signal peptide of 22 amino acids, a mature peptide of 25 amino acids, and a carboxy-terminal prodomain of 20 amino acids. The epinecidin-1 gene consisted of three introns and four exons. A TATA box and several consensus-binding motifs for transcription factors were found in the proximal region 5' to the transcription initiation site. A synthetic, amidated mature peptide of epinecidin-1 exhibited high antimicrobial activity against *Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio vulnificus, Pasturella multocida, Morganella morganii, Aeromonas sobrio, Aeromonas hydrophila, Flavobacterium meningosepticum* and *Escherichia coli* DH5 α (minimal bactericidal concentration (MBC)<5 μ M). Most of these bacteria are known pathogens in aquaculture. Some fungi, such as *Candida albicans* and *Microsporosis sanis*, were also sensitive to this synthetic peptide (MBC<20 μ M). In conclusion, epinecidin-1 may be effective in the treatment or prevention of bacterial infections in aquaculture. © 2005 Elsevier B.V. All rights reserved.

Keywords: Antimicrobial peptide; Orange-spotted grouper; Gene organization; Minimal bactericidal concentration

1. Introduction

Fish culture is a world economic activity especially important for tropical and sub-tropical countries. The recent improvement of fish culture using intensive culture techniques has increased the production of fish from aquaculture. However, the intensification of fish farming has also been accompanied by the outbreak of many infectious diseases in fish farms. Most of these diseases are caused by pathogens of bacterial and viral origin. The outbreak of infectious diseases has caused huge losses in fish production in the last few years. To prevent the outbreak of these diseases, large amounts of antibiotics have been used in the fish farms (Lalumera et al., 2004). However, bacterial resistance to conventional antibiotics is becoming more

^{*} Corresponding author. Tel.: +86 20 84110976; fax: +86 20 84036215.

E-mail address: lsbrc05@zsu.edu.cn (J.-G. He).

prevalent. Therefore, there have been many recent attempts to find effective replacements for antibiotic use. The production of antimicrobial peptides (AMPs) has been identified as a major defense mechanism against infections in lower organisms as well as an important component of the innate immune response of mammals, including humans. In the last decade, many species-specific AMPs have been isolated from fish, and some of them showed a broad spectrum of activity against Gram-positive and Gram-negative bacteria (Cole et al., 1997; Lauth et al., 2002; Patrzykat et al., 2003).

The orange-spotted grouper, *Epinephelus coioides*, is an important marine fish cultured in southern China, the production reaches 10,000 tons annually. Recently, bacteria and virus have caused high mortality (50% to 70%) in *E. coioides* cultures (Zhu et al., 2000). This paper describes the isolation of an AMP cDNA from the orange-spotted grouper, and the bactericidal activity of this peptide.

2. Materials and methods

2.1. Isolation of orange-spotted grouper antimicrobial peptide cDNA

An orange-spotted grouper leukocyte cDNA library was constructed using the SMART cDNA Library Construction Kit (Clontech, USA), and more than 300 expressed sequence tags (ESTs) were sequenced (Yin et al., 2003). The ESTs were compared with GenBank Database using the BLASTX program (www.ncbi.nlm. nih.gov), and an antimicrobial peptide cDNA was identified that we named "epinecidin-1", after the genus *Epinephelus*.

1	G	GCA	GCA	TCT	GTA	GAT	CTC	ACA	СТА	CTT	GAT	TGG	C <u>CC</u>	TCT		F1 GTC D1	46
47	ACA	GCT	TTT	TGA	<u>C</u> AT	TCA	CGC	TGA	GTC	ACT	GGA	AAG			AGG	TĠĆ	94
1														M	R	С	3
95	ATC	GCC	CTC	TTT	CTT	GTG	TTG	TCG	CTG	GTG	GTC	CTC	ATG	GCT	GAA	CCC	142
4	Ι	А	L	F	L	V	L	S	L	V	V	L	М	А	Е	Р	19
Signal peptide Intron 2 (427 bp) ★																	
143	GGG	GAG	GGT	TTT	ATC	TTC	CAC	ATC	ATT	AAA						GGC	190
20	G	Е	G	F	Ι	F	Н	Ι	Ι	K	G	L	F	Н	А	G	35
	Mature peptide																
191	AAG	ATG	ATC	CAT		Intro CTT					CGA	CAT	GGC	GTG	GAA	GAG	238
36	K	М	Ι	Н	G	L	V	Т	R	R	R	Н	G	V	Е	Е	51
													<u> </u>				
239						CAA											286
52	L	Q	D	L	D	Q	R	A	F	Е	R	Е	K	А	F	A —	67
287	TCA	CTC	TAC	CAT	сст	CCA	1	loma		CCC	ACT	стт	TCC	ттл	ACA	тсс	334
207 68	10A *	GIU	TAC	GAT	001	UCA	101	GAA	AGA	GUU	ACT	UII	IGC	IIA	AGA	100	
335		AAA	AAA	ТАТ	ACA	TAT	TGC	TGT	TGA	ATA	TAA	ТТА	AAA	AAA	CTG	GCT	382
383						TGC											430
																60	
431	TTT	GGA	AGA	AAA	CAA	AAA	GTC	AGT	GAT	TTG	AAA	TAA	ATC				478
				_											- D2	2	
479	TGT	TAC	GCA	AAA	GCA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	AAA	А			518

Fig. 1. Nucleotide and predicted amino acid sequence of epinecidin-1 cDNA from the orange-spotted grouper (GenBank accession no. AY294407). Amino acid sequences are shown by one capital letter below the nucleotide sequences. The organization of the peptide domains (signal peptide, mature peptide, and prodomain) is shown by the bar. Binding sites for primers are shown with arrows (5' to 3'). Primer F1 and F2 are for the amplification of genomic DNA. Primers D1 and D2 are for reverse PCR. The start and stop codons are shown in bold letters.

Download English Version:

https://daneshyari.com/en/article/2426223

Download Persian Version:

https://daneshyari.com/article/2426223

Daneshyari.com