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a  b  s  t  r  a  c  t

The  unified  theory  of  reinforcement  has been  used  to develop  models  of  behavior  over  the  last  20  years
(Donahoe  et  al.,  1993).  Previous  research  has  focused  on the theory’s  concordance  with  the  respondent
behavior  of  humans  and  animals.  In this experiment,  neural  networks  were  developed  from  the theory
to  extend  the  unified  theory  of  reinforcement  to  operant  behavior  on  single-alternative  variable-interval
schedules.  This  area  of  operant  research  was  selected  because  previously  developed  neural  networks
could  be  applied  to it without  significant  alteration.  Previous  research  with  humans  and  animals  indicates
that  the  pattern  of  their  steady-state  behavior  is hyperbolic  when  plotted  against  the  obtained  rate  of
reinforcement  (Herrnstein,  1970).  A genetic  algorithm  was  used  in the  first part  of  the experiment  to
determine  parameter  values  for the  neural  networks,  because  values  that were  used  in previous  research
did not  result  in  a hyperbolic  pattern  of  behavior.  After  finding  these  parameters,  hyperbolic  and  other
similar  functions  were  fitted  to the behavior  produced  by the  neural  networks.  The  form  of the  neural
network’s  behavior  was  best  described  by  an exponentiated  hyperbola  (McDowell,  1986;  McLean  and
White,  1983;  Wearden,  1981),  which  was derived  from  the  generalized  matching  law  (Baum,  1974).
In  post-hoc  analyses  the  addition  of a baseline  rate of behavior  significantly  improved  the  fit  of the
exponentiated  hyperbola  and removed  systematic  residuals.  The  form  of this  function  was  consistent
with  human  and  animal  behavior,  but  the  estimated  parameter  values  were  not.
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1. Introduction

The central assertion of the unified theory of reinforcement
(UTR) is that behavior in operant and respondent experiments is
a result of the same neural process (Donahoe et al., 1993). This is
a general theory that describes the internal biological processes
that lead to both operant and respondent behavior. To evaluate
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the plausibility of the UTR as an account for behavior, biologi-
cally inspired models have been developed and evaluated (Burgos,
1996, 1997, 2003, 2005, 2007; Burgos and Murillo-Rodríguez, 2007;
Burgos et al., 2008; Burns et al., 2011; Calvin and McDowell, 2015;
Donahoe, 2002; Donahoe and Burgos, 1999, 2000; Donahoe et al.,
1993, 1997a,b; Sánchez et al., 2010). UTR-inspired models do not
explicitly distinguish between respondent and operant contingen-
cies, but in their functioning they adapt to both contingencies.
The theory states that behavior adapts by adjusting the strength
of neural connections in response to positive consequences. In
the absence of positive consequences, neural connections slowly
weaken and behavior is less likely to be observed. Through repeated
interactions with the environment, UTR-inspired models adapt
their behavior to environmental events.

Research with UTR-based models has focused on respondent
behavior, and very little has been done to examine operant behav-
ior. The only exceptions to this were demonstrations of operant
conditioning by UTR-based models (Donahoe et al., 1993; Calvin
and McDowell, 2015). That a behavior is more frequently observed
when the behavior is followed by positive consequences was a min-
imum prerequisite for UTR-based models to be plausible, and it was
important that this was demonstrated. Since the UTR must account
for both operant and respondent behavior, more operant research
would enhance its plausibility as an account for behavior.

An area of operant research to which previously explored UTR-
based models can be applied without significant alteration is the
quantitative law of effect (Herrnstein, 1970). The quantitative
law of effect is a development of the matching law (Herrnstein,
1961) that added important theoretical underpinnings in order
to understand behavior on single-alternative variable-interval (VI)
schedules. The quantitative law of effect has been shown to describe
single-alternative VI behavior of animals (e.g., Herrnstein, 1970;
McSweeney et al., 1983; reviewed in McDowell, 2013) and humans
(Beardsley and McDowell, 1992; Bradshaw et al., 1976, 1977, 1978;
Fernandez et al., 1995; McDowell and Wood, 1984, 1985). Her-
rnstein developed the quantitative law of effect by making the
two important assumptions that humans and animals engage in
constant rates of behavior, and that all behavior is choice. These
assumptions extended the matching law, which describes behav-
ior on concurrent VIVI schedules, to single VI schedules (Herrnstein,
1970). The quantitative law of effect is a hyperbola,

B = kR

R + re
, (1)

where B is the observed rate of a target behavior, R is the rate
of obtained reinforcement, and k and re are estimated parameters
that have important theoretical interpretations. In the theory, the
k parameter is the maximum rate of behavior, which is assumed
to be constant. If the organism is not engaging in a targeted oper-
ant behavior then it is assumed to be engaging in other behaviors
that may  result in beneficial outcomes. The unmeasured extrane-
ous behavior is assumed to occasionally result in reinforcement,
which is the re parameter. Mathematically, the hyperbola asymp-
totes at k, and re is the point on the x-axis that predicts a rate of
behavior that is half that of k (Bradshaw et al., 1976).

An improved version of the matching law was  developed by
Baum (1974) to account for systematic inaccuracies in the original
version, and can be used to develop a single alternative version in
the same way  that Eq. (1) was derived (McDowell, 1986; McLean
and White, 1983; Wearden, 1981). The simplified version of this
generalized quantitative law of effect is an exponentiated hyper-
bola,

B = kRa

Ra + re
. (2)

The parameter a allows for systematic deviations from the exact
matching of ratios of behavior and reinforcement, which are termed
under- and over-matching. The re in Eq. (2) has a slightly differ-
ent meaning than in Eq. (1) because its full theoretical expression
is re

a/b,  which could be interpreted as the relative value of the
reinforcers obtained by unmeasured behavior. The interpretation
changes because the bias parameter, b, accounts for systematic dif-
ferences in the reinforcing values of measured and unmeasured
reinforcers. For the purposes of fitting the equation it is simplified
to a single parameter, because re and b cannot be independently
estimated. The exponent parameter, a, adjusts the form of the func-
tion by bending it at the lowest rates of obtained reinforcement. If
the value of a is greater than 1 then the function tends to flatten at
the lowest rates of obtained reinforcement, and when less than 1
the function becomes steeper. While this exponentiated hyperbola
is similar to the hyperbola specified by Eq. (1), it has some unique
fitting characteristics, and is based on the more strongly supported
generalized matching law (McDowell, 2013).

To assess the UTR’s predictions it is necessary to simulate UTR-
inspired neural networks. The complex and flexible behavior of
these neural networks comes from the interactions of relatively
simple components. At their simplest, these networks are built
from two types of components: neural processing units (NPUs) and
connections. These components serve different functions within
the networks, with NPUs primarily determining how the network
will behave in the immediate future, and connections transmitting
and regulating the importance of NPU determinations. Connections
are very important, because they are the components of neural
networks that adapt to the environment. Connections adapt by
changing their strength, which regulates how important the NPU
at the beginning of the connection is to the NPU at its end point.
If a positive consequence follows behavior, then the connections
that previously led to that behavior are strengthened, which makes
that behavior more likely to occur in the future. Detailed mathe-
matical descriptions of the network components may  be found in
multiple articles (Burgos, 2003, 2007; Burgos et al., 2008; Calvin
and McDowell, 2015; Donahoe et al., 1993; Sánchez et al., 2010),
but their exact mathematical functioning is not a critical compo-
nent of the UTR and has been omitted in this paper for the sake of
concision. Of the articles that provide mathematical descriptions,
Calvin and McDowell (2015) provides a particularly clear descrip-
tion of the networks and also includes a copy of the code that was
used to conduct those experiments, which is helpful to whoever is
interested in replicating UTR neural networks.

While the exact functioning of connections and NPUs are
not theoretically important to the UTR, their arrangement and
roles within the network are especially important to the theory
(Donahoe et al., 1993). The standard UTR neural network is orga-
nized into four distinct layers, as shown in Fig. 1. From left to right
these layers are the input (IN), hippocampal (HIP), dopaminergic
(DOP), and output (OUT) layers. Information about environmental
stimuli and the consequences of behavior are given to the neural
network in the input layer, thus acting as its eyes and ears. The hip-
pocampal and dopaminergic layers then process this information
to determine how the network should behave in the environment.
The output layer implements this decision by interacting with the
environment. By processing information through these layers the
neural network engages with and adapts to its environment.

The architecture of UTR neural networks can be subdivided
into response and learning pathways that cross all four layers. The
response pathway determines which, if any, behaviors are evoked
or elicited by the environment, and the learning pathway adapts
the response pathway to the environment by changing connection
strengths. In Fig. 1, the learning pathway is shaded gray to differ-
entiate it from the response pathway. The network is selectionist
because behaviors become more likely to occur when followed



Download English Version:

https://daneshyari.com/en/article/2426436

Download Persian Version:

https://daneshyari.com/article/2426436

Daneshyari.com

https://daneshyari.com/en/article/2426436
https://daneshyari.com/article/2426436
https://daneshyari.com

