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a  b  s  t  r  a  c  t

For  the  last  20  years  the  unified  theory  of  reinforcement  (Donahoe  et  al.,  1993)  has  been  used  to  develop
computer  simulations  to  evaluate  its plausibility  as  an  account  for behavior.  The unified theory  of  rein-
forcement  states  that  operant  and  respondent  learning  occurs  via  the  same  neural  mechanisms.  As part  of
a  larger  project  to evaluate  the  operant  behavior  predicted  by  the  theory,  this  project  was  the first  replica-
tion  of neural  network  models  based  on  the  unified  theory  of  reinforcement.  In  the  process  of  replicating
these  neural  network  models  it became  apparent  that  a previously  published  finding,  namely,  that  the
networks  simulate  the  blocking  phenomenon  (Donahoe  et  al., 1993), was  a misinterpretation  of the data.
We show  that  the  apparent  blocking  produced  by these  networks  is an  artifact  of  the  inability  of  these
networks  to  generate  the  same  conditioned  response  to multiple  stimuli.  The  piecemeal  approach  to
evaluate  the  unified  theory  of reinforcement  via  simulation  is critiqued  and  alternatives  are  discussed.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The unified theory of reinforcement (UTR) has been used to
develop neural network models to evaluate its neural-mechanistic
account of behavior (Burgos, 1996, 1997, 2003, 2005, 2007; Burgos
and Murillo-Rodríguez, 2007; Burgos et al., 2008; Burns et al., 2011;
Donahoe, 2002; Donahoe and Burgos, 1999, 2000; Donahoe et al.,
1993, 1997a,b; Sánchez et al., 2010). At its simplest, the unified the-
ory of reinforcement proposes that the same neurological systems
control behavior under both operant and respondent contingen-
cies (Donahoe et al., 1993). The ventral tegmental and CA1 areas of
the brain are central to this theory because they control changes in
neural connectivity via diffuse reinforcement systems. The inter-
nal changes caused by these diffuse reinforcement systems result
in an animal’s behavior adapting to its environment. The theory’s
account is selectionistic, as behaviors that precede positive con-
sequences become more likely to occur in the future. While this
theory is a biological argument, its plausibility has been evaluated
by simulating neural networks that interact with environments.

UTR neural networks have successfully mimicked a number of
important phenomena. Early in their development, these networks
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were shown to be capable of exhibiting conditioned responding,
extinction, and facilitated reacquisition under both respondent and
operant contingencies (Donahoe et al., 1993). The model has also
been argued to demonstrate behavior that is consistent with the
blocking phenomenon (Donahoe et al., 1993). Other phenomena
that UTR neural network models have mimicked are revaluation
(Donahoe and Burgos, 2000), latent inhibition (Burgos, 2003), and
autoshaping (Burgos, 2007). The behavior of UTR neural networks
have also been compared to those of animals to suggest that this
type of neural network generates qualitatively accurate predictions
(Burgos et al., 2008; Burns et al., 2011). Unfortunately, despite these
successes, all published work with these neural networks has been
led by the original group of researchers, which has limited the
degree of discussion regarding the model’s design and behavior.

The ability of UTR neural networks to simulate both blocking and
facilitated reacquisition phenomena is very important. The block-
ing phenomenon (Kamin, 1969) is when a novel stimulus fails to
become effective during conditioning due to a strong, previously
conditioned stimulus/stimuli being presented with the new stim-
ulus. This phenomenon is particularly important in the history
of conditioning because of the Rescorla-Wagner model (Rescorla
and Wagner, 1972; Wagner and Rescorla, 1972), which predicts
it. This model is still referenced and discussed to the current day
(e.g., Ruprecht et al., 2014; Culver et al., 2015) because many of
its most important predications are accurate (Miller et al., 1995).
There are, however, phenomena that it fails to predict, and facili-
tated reacquisition is one of them (Miller et al., 1995). By being able
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to predict both phenomena UTR neural networks were established
as a potentially important model of conditioning.

Unified-theory-of-reinforcement neural network models are
relatively complex compared to other models because the
networks attempt to mimic  neural systems. Despite their com-
plexity, these models are built from only two component types:
neural processing units (NPUs) and connections. The primary func-
tion of NPUs is to calculate an activation level, which is a rough
determination of how the network should behave. The current acti-
vation level of each NPU is a function of its previous level and the
activation levels of the NPUs that connect to it. There are also spe-
cific circumstances where a NPU’s activation level is set directly
by the simulation rather than being calculated. Connections, the
other component type, link pairs of NPUs and are unidirectional.
Each connection has a weight value which modulates the extent
to which the preceding NPU’s activation level influences the termi-
nal NPU’s activation level. Connections enable networks to perform
complex calculations by linking multiple NPUs together, thus com-
bining their computational power. The exact equations used to
manipulate these processes are provided in Appendix A but are not
necessary to understand how UTR neural networks generally func-
tion. In fact, the mathematical details of these neural networks are
not considered a central component to how the UTR is translated
into simulations (Donahoe, 2002).

The arrangement of connections and NPUs, a network’s archi-
tecture, is the most important part of the theory’s implementation
(Donahoe et al., 1993). The architecture of UTR neural networks is
typically organized into four distinct layers, as shown in Fig. 1. From
left to right these layers are the input (IN), hippocampal (HIP), dopa-
minergic (DOP), and output (OUT). The layers are listed in the order
of processing, with the input layer being affected by stimuli before
the hippocampal layer, the hippocampal before the dopaminergic
layer, and so on. The architecture of UTR neural networks can be
further subdivided into two parallel pathways that run through all
four layers. These are the response and learning pathways, which
are differentiated from each other in Fig. 1 by shading; the learn-
ing pathway is shaded gray. The response pathway determines the
behaviors that are evoked or elicited by stimuli. The learning path-
way adapts the response pathway to the environment such that the
network will more frequently express behaviors that have previ-
ously resulted in beneficial consequences. This unique interaction
of the learning and the response pathways through the processing
layers is the primary way  in which the theory is manifested within
UTR neural networks.

The function of the response pathway is to observe and engage
with the environment. Stimuli are observed at the input layer

Fig. 1. The architecture of a standard 21-31-31-2 unified-theory-of-reinforcement
neural network. Standard UTR neural networks have 4 layers, which are input
(IN), hippocampal (HIP), dopaminergic (DOP), and output (OUT). The letters within
the NPUs indicate special functions (S—stimulus detecting, R—response emitting,
Hip—hippocampal, Dop—dopaminergic, *—unconditioned). The design of this figure
is  based on Figs. 1 and 4 from the Sánchez et al. (2010) article.

by unique stimuli-detecting NPUs. These NPUs are unique in that
their activation level is set to a specific value if in the presence
of a specific stimulus. For example, if a conditioned stimulus is
observed then the activation level of the appropriate conditioned
stimulus detecting NPU, for example S1 in Fig. 1, would be set
to a certain value, with larger values indicating greater stimulus
salience. This environmental information is passed from the input
layer to the hippocampal layer via connections, which are shown
in Fig. 1 as thin black lines that end in black circles. The model’s
hippocampal interneuron layer has been argued to function as a
sensory-association area because it can combine disparate stimuli,
such as legs, a seat, and a back, into a more complex stimulus, like a
chair (Burgos, 2003; Burgos et al., 2008; Donahoe, 2002; Donahoe
et al., 1997a,b). This complex-stimulus information is passed to
and processed by the dopaminergic interneuron layer. The dopa-
minergic layer has been argued to behave as a motor-association
area because it determines how the network will engage with the
environment (Burgos, 2003; Burgos et al., 2008; Donahoe, 2002;
Donahoe et al., 1997a,b). This response planning information is
then passed to the response layer where the actual behavior is
generated. The activation levels of the NPUs in the response layer
determine which behaviors the network will engage in. Through
these steps the neural network model observes and interacts with
the environment.

The learning pathway adapts the neural network’s response
pathway to the environment and controls unconditioned
responses. These changes occur due to unconditioned stimuli
which are detected by the NPUs of the learning pathway’s input
layer. If an unconditioned stimulus is available, then the acti-
vation level of the unconditioned stimulus NPU, which is S* in
Fig. 1, is set to a specific value (Donahoe, 1993). Larger values
indicate greater reinforcer magnitudes. The activation level of
the unconditioned stimulus NPU is then directly passed to the
unconditioned/conditioned response NPU and dopaminergic NPU,
which are respectively labeled R* and Dop in Fig. 1, through
unique connections. The connections from the unconditioned
stimulus NPU are unique in that they set the activation level of the
target NPUs equal to the unconditioned stimulus NPU’s activation
level. Despite functioning identically, these two connections serve
very different purposes. The connection between the uncondi-
tioned stimulus NPU and unconditioned/conditioned response
NPU creates a reflex; the unconditioned stimulus always results
in the unconditioned response. The unique connection to the
dopaminergic NPU is the most important connection in the entire
neural network, because it provides the reinforcement signals that
enable the network to adapt to the environment. These two unique
connections give the network its ability to adapt and react.

The reinforcement signal in the learning pathway is used to
adapt the neural network to the environment by changing the
weights of connection. Connection weights are changed based on
the difference between the network’s prediction and the actual
consequence, with greater differences leading to greater changes.
Connection weights are updated in two different ways. The updat-
ing method that is used depends on the layer at which the
connection ends. Connections that end at the dopaminergic or
response layer are adapted to the environment via a diffuse rein-
forcement signal that is produced by the dopaminergic NPU. The
magnitude of the reinforcement signal is determined by the dopa-
minergic NPU’s activation level, which changes most dramatically
when it receives a reinforcement signal from the unconditioned
stimulus NPU. The presence of an unconditioned stimulus typically
results in connection weights increasing and its absence in connec-
tion weights decreasing. The gray regions in Fig. 1 that lead from the
NPU labeled Dop indicate which connections are affected by this
reinforcement signal. The dopaminergic NPU has been argued to
correspond to the ventral tegmental area because the current neu-
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