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h i g h l i g h t s

� This paper presents a new modeling method to forecast energy demands.
� The model is based on physical–statistical approach to improving forecast accuracy.
� A new method is proposed to address the heterogeneity challenge.
� Comparison with measurements shows accurate forecasts of the model.
� The first physical–statistical/heterogeneous building energy modeling approach is proposed and validated.
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a b s t r a c t

Energy consumption forecasting is a critical and necessary input to planning and controlling energy usage
in the building sector which accounts for 40% of the world’s energy use and the world’s greatest fraction
of greenhouse gas emissions. However, due to the diversity and complexity of buildings as well as the
random nature of weather conditions, energy consumption and loads are stochastic and difficult to pre-
dict. This paper presents a new methodology for energy demand forecasting that addresses the hetero-
geneity challenges in energy modeling of buildings. The new method is based on a physical–statistical
approach designed to account for building heterogeneity to improve forecast accuracy. The physical mod-
el provides a theoretical input to characterize the underlying physical mechanism of energy flows. Then
stochastic parameters are introduced into the physical model and the statistical time series model is for-
mulated to reflect model uncertainties and individual heterogeneity in buildings. A new method of model
generalization based on a convex hull technique is further derived to parameterize the individual-level
model parameters for consistent model coefficients while maintaining satisfactory modeling accuracy
for heterogeneous buildings. The proposed method and its validation are presented in detail for four dif-
ferent sports buildings with field measurements. The results show that the proposed methodology and
model can provide a considerable improvement in forecasting accuracy.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The demand for reliable building energy forecasting models is
rapidly increasing because energy and environmental issues
related to the building sector have become a prominent concern
of society. In addition, the ever-growing dynamics and complexity
of current and future building systems, e.g. the integration of infor-
mation and communication technologies into the heating, ventila-
tion and air-conditioning (HVAC) systems, has made building
energy modeling more sophisticated and forecasting more difficult.

However, building energy forecasting models have always been
useful in helping predict, transmit, distribute and plan building
energy use to deal with capacity needs and to ensure energy effi-
ciency and demand response. And models are especially needed
when tackling difficult and complex building systems because they
can improve and deepen our understanding of these systems.
Therefore, modeling will continue to encompass a large and impor-
tant literature in building energy research.

Although a variety of models ranging from simple to complex
exist in the literature, two general types of modeling methods
are widely used: physical and statistical plus their combination.
The physical models consist of partial differential equations of phy-
sical laws that govern energy flows in buildings. For example,
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Ascione et al. [1] applied a physical model to predict cooling energy
savings with reference to a well-insulated massive building to
investigate the effect of phase change materials on the exterior
building envelope during the cooling season [1]. Physical models
can provide valuable insight into general physical mechanism
and potential knowledge, but are often limited to simple systems.
Buildings, especially large or complex ones, are inherently complex
and nonlinear because of the multiple interconnections among
their diverse energy systems. Simplifications of the model equa-
tions and lack of knowledge of the physical mechanisms underly-
ing complex systems may lead to a lack of precision or incorrect
results. In particular, models often approximate individual build-
ings which are not representative enough. As a result, many physi-
cal models are only applicable to micro-scale validations which can
hardly be generalized. In contrast to physical models, statistical
models are constructed based on experimental data for flexibly
coping with the various complexities. As examples, statistical
machine learning models have been applied to forecast energy
consumption and loads of residential buildings [2,3]. Alan et al.
[4] employed a statistical model for load forecasting in an applica-
tion of long-term electric power transmission planning [4]. The
major limitation of the statistical models is that they provide much
less physical understanding and, thus, substantial amounts of data
are needed for training the models due to the unknown underlying
mechanisms. Model output is estimated directly from input–out-
put data without model structures and as a result the models suffer
the same type of accuracy and application limitations due to the
possible non-representative data.

In a typical application, many models fall between these two
extremes. Neto and Fiorelli [5] compared physically-based Ener-
gyPlus [6] and statistically-based artificial neural network (ANN)

models in forecasting building energy consumption. They found
that even though the differences in accuracy were small, with the
ANN model providing a slightly better prediction, occupant behav-
ior and weather changes could significantly affect the energy con-
sumption profile. This made forecasting more difficult or
inaccurate for both models for air conditioned buildings. Xu et al.
[7] extended EnergyPlus with ANNs for a holistic energy consump-
tion model at the inter-building level which considered the influ-
ence of residents and the neighborhood context. Lee and Tong [8]
combined a dynamic model with genetic programming to improve
the forecasts of energy consumption for the traditional statistical
approach. Focusing on the impact of different shading devises and
building envelopes characteristics on the demand for air-condition-
ing public buildings, Ouedraogo et al. [9] adopted simplified physi-
cal energy-balance and empirical models to investigate weather
trends and how the trends affected public buildings’ cooling loads
for 2010–2080 [9]. Using a similar forecasting approach, Gouveia
et al. [10] performed energy end-use demand prediction in
residential buildings for 2050 and aimed to identify the parameters
governing energy services demand uncertainty [10]. A similar
approach was also employed by Kwak et al. [11] to predict
short-term and real-time energy demand for the effective operation
and management of buildings using case studies. Roldan-Blay et al.
[12] adopted a more complicated model of ANNs for predicting
short-term building energy consumption. The input variables were
reduced to physical variables to avoid too much variability in the
model. Mavromatidis et al. [13] combined physical-thermal and
fractional factorial simulation methods to obtain regression
models in the form of polynomial functions of building envelope’s
physical characteristics for dynamic thermal performance forecast-
ing [13].

Nomenclature

a model parameter referred to Eq. (16)
A surface area (m2)
b model parameter referred to Eq. (16)
B backward shift operator referred to Eq. (16)
C air heat capacity of indoor air (J m�3 K�1) (product of den-

sity and specific heat)
d, D diagonal elements and matrix referred to Eqs. (22) and

(23)
E expectation operator referred to Eq. (31)
F thermal transmission defined in Eq. (12)
_G heat generation rate of the occupancy (W)
h convective heat transfer coefficient (W m�2 K�1)
I solar radiation (W m�2)
i, j indices
k conductivity (W m�1 K�1)
l, L layer thickness (m)
l time ahead forecasting referred to Eq. (31)
n layer number
nair air change rate (h�1)
noccupancy number of occupants
p, q model parameter referred to Eq. (16)
r rank of approximation referred to Eq. (23)
R error between predicted and measured
_Q heat flow (W m�3)

t time (s)
T temperature (�C/K)
u, U vector and matrix referred to Eqs. (22) and (23)
v, V vector and matrix referred to Eqs. (22) and (23)
V volume (m3)
w weights referred to Eqs. (21) and (27)
x space coordinate

x, y variables or time series

Greek symbols
a thermal diffusivity (m2 s�1)
asol fraction of the surface for the incident solar radiation
b model parameters referred to Eq. (14) and Eq. (25)
e error term (�N(0,r) or zero mean and variance r)
c coefficient referred to Eq. (26)
rsol transmissivity

Superscripts and subscripts
t time of the observed datum referred to time series
+ indoor
� outdoor

Abbreviations
AIC Akaike information criterion
ANN artificial neural networks
AR autoregressive
ARIMA autoregressive-integrated-moving-average
HVAC heating, ventilation and air-conditioning
RBF radial basis function
RMSE root mean squared error
R2 coefficient of determination
SRM structural risk minimization
SVD singular value decomposition
SVM support vector machine
VFD variable frequency drive
CO2 carbon dioxide
ACF autocorrelation function
PACF partial autocorrelation function
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