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a b s t r a c t

Performance on psychophysical tasks is influenced by a variety of non-sensory factors, most notably the
magnitude or probability of reinforcement following correct responses. When reinforcement probability
is unequal for hits and correct rejections, signal detection theory specifies an optimal decision criterion
which maximizes the number of reinforcers. We subjected pigeons to a task in which six different stimuli
(shades of gray) had to be assigned to one of two categories. Animals were confronted with asymmetric
reinforcement schedules in which correct responses to five of the stimuli were reinforced with a proba-
bility of 0.5, while correct responses to the remaining stimulus were extinguished. The subjects’ resultant
choice probabilities clearly deviated from those predicted by a maximization account. More specifically,
the magnitude of the choice bias increased with the distance of the to-be-extinguished stimulus to the
category boundary, a pattern opposite to that posited by maximization. The present and a previous set of
results in which animals performed optimally can be explained by a simple choice mechanism in which
a variable decision criterion is constantly updated according to a leaky integration of incomes attained
from both response options.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A vast body of data supports the notion that animals, includ-
ing humans, perform statistically optimally in a wide range of
tasks, supporting the claim that evolution has shaped the ner-
vous system of organisms in a way that yields maximally adaptive
behavior (Pyke et al., 1977). Examples of optimal behavior include
multisensory integration (Ernst and Banks, 2002), risk assess-
ment (Balci et al., 2009), reward harvesting (Corrado et al., 2005;
Navalpakkam et al., 2010), perceptual classification (Summerfield
et al., 2011), visual search (Najemnik and Geisler, 2005), sensorimo-
tor learning (Körding and Wolpert, 2004), and movement planning
(Trommershäuser et al., 2005). Optimality is frequently assessed by
comparing behavioral output to benchmarks computed via meth-
ods derived from statistical decision theory. Such methods have
also been used to assess the reliability of sensory neural signals
(Newsome et al., 1989; Stüttgen and Schwarz, 2008; Stüttgen
et al., 2011a), and have even been invoked as accounts of neural
processing (Deneve et al., 1999; Gold and Shadlen, 2002; Jazayeri
and Movshon, 2006).
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Perhaps the most widely disseminated offspring of statistical
decision theory is signal detection theory (SDT; Green and Swets,
1988). SDT provides a conceptual framework for psychophysics in
which the sensory and decision processes are separable. SDT posits
that repeated presentations of the same physical stimulus give
rise to a variable internal representation on a decision axis, which
for illustration purposes can be thought of as “perceived stimulus
intensity” (but note that the nature of the decision variable is more
appropriately characterized as “strength of evidence”; Pastore et al.,
2003). The stimulus representation is assumed to vary randomly
from one presentation to the next; usually, it is assumed that the
random variations conform to a normal distribution with fixed vari-
ance. If an observer is asked to categorize either of two different
stimuli varying along some physical dimension, SDT assumes that
the subject does so by comparing the perceived stimulus intensity
on each trial (�t) to a criterion value c, with the decision rule:

- if �t ≥ c, respond “high-intensity stimulus present”,
- if �t < c, respond “low-intensity stimulus present”.

This decision rule can be generalized to more than two stimuli
and to other kinds of tasks (MacMillan and Creelman, 2005). For our
present purposes, we will discuss the case of a single-interval forced
choice (categorization) task with six stimuli differing in luminance.
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Fig. 1A shows six normal distributions (gray), each separated by
1 standard deviation from its immediate neighbors, which corre-
spond to the hypothesized internal representations of the stimuli.
Assume that the three leftmost ones are arbitrarily assigned to cat-
egory S1, and the three rightmost ones are assigned to category S2.
An observer is confronted with the task to respond with “S1” or
“S2” on a given trial t on the basis of a single stimulus value, �t.

1.1. Optimization account of perceptual categorization

Statistical decision theory prescribes an optimal decision rule in
which sensory evidence, a priori probability of signal occurrence,
and values and costs of correct and incorrect responses are inte-
grated. Here, we will assume that all stimuli are equiprobable and
ignore costs of incorrect responses. Instead, we will focus on the
effects of different values, implemented by assigning different rein-
forcement probabilities for correct responses following different
stimuli.

Fig. 1A illustrates the simplest case in which correct responses
following each stimulus are reinforced with the same probability
(0.5; “symmetrical reinforcement”). The bold black line repre-
sents the “objective reward function” (ORF; Maddox, 2002), i.e. the
expected number of reinforcers per trial as a function of criterion
placement. The position on the x-axis for which the ORF has its
maximum value corresponds to the location of the optimal cri-
terion and is indicated by the black vertical line. In the present
example where all neighboring stimuli are equidistant, the optimal
criterion is located right in the middle between the means of the
third and the fourth stimulus distributions. The optimal strategy
dictated by statistical decision theory is to respond “S1” whenever
�t is smaller and to respond “S2” whenever �t is larger than this
criterion (the computations giving rise to the criterion placements
in Figs. 1 and 2 are explained below and are also contained in a
Matlab script provided as supplementary material).

In Fig. 1B, the six gray sigmoidal lines show the probability of
reinforcement for each stimulus separately as a function of crite-
rion placement for the same situation as in Fig. 1A. The probability
of reinforcement increases with the criterion for S1 trials (three
darkest curves, left) and decreases for S2 trials (three brightest
curves, right), because a higher criterion value will lead to more
“S1” responses and fewer “S2” responses. Reinforcement probabil-
ity saturates at 0.5, because in our experiment correct responses
only yield reinforcement with that probability. Since all six stimuli
have the same probability (1/6) of being presented to the subject,
the overall probability of obtaining reinforcement in a random trial
(bold black line) is the average of the reinforcement probabilities
for each stimulus; this is just another way to define the ORF.

Formally, let us denote the means of the six stimulus distribu-
tions with �1 to �6. The probability of responding with “S1” is
then ˚(−�i + c) for the ith stimulus, where ˚ is the standard nor-
mal cumulative distribution function. Let reinforcement RfS1 = 1 if
an S1-category stimulus was presented and the subject’s response
was “S1” and led to reinforcement; let RfS1 = 0 otherwise. Corre-
spondingly, let RfS2 = 1 if an S2-category stimulus was presented
and the subject’s response was “S2” and led to reinforcement; let
RfS2 = 0 otherwise. Then the probabilities for reinforcement on S1-
and S2-trials (E(RfS1) and E(RfS2), respectively) are

E(RfS1) =
∑

i=1,2,3

1
6

× ˚(−�i + c) × 0.5

and

E(RfS2) =
∑

i=4,5,6

1
6

× (1 − ˚(−�i + c)) × 0.5

The probability of obtaining a reinforcer in any given trial
is the sum of the two: E(Rf) = E(RfS1) + E(RfS2). E(Rf) (or, more

precisely, E(Rf|c)) is the objective reward function. In the fol-
lowing section, we will describe an experimental manipulation
of reinforcement probability which yields counterintuitive pre-
dictions under a reinforcement-maximization account. Then, we
will describe the predictions of a non-optimization account which
builds on insights from animal learning theory.

1.2. Experimental manipulation: extinguishing responding to a
single stimulus

What happens in the above scheme when the reinforcement
probability for a single stimulus is reduced to 0? In our exper-
iment, all six stimuli are still shown with the same probability,
and correct responses are reinforced with probability 0.5 for all
but one stimulus. Fig. 1C–H illustrates the consequences of extin-
guishing responding to each of the six stimuli at a time (these
conditions are henceforth termed E1 to E6). It can be seen that
the ORFs become asymmetrical, and that the peaks of these func-
tions (i.e., the positions of the optimal decision criteria) move away
from the neutral criterion (the latter is depicted as a dashed verti-
cal line in all panels for comparison purposes). Obviously, the effect
of extinguishing responses to a single stimulus on the position of
the optimal criterion depends on the condition: Intriguingly, the
criterion is almost unaffected in conditions E1 and E6 (compare
Fig. 1C and H to Fig. 1B). Intuitively, since stimulus 1 is furthest
away from the neutral criterion, its contribution to the ORF around
the optimum is very small and nearly flat (Fig. 1A and B), and there-
fore extinguishing it does not change the position of the optimum
much, it merely shifts its peak downwards (Fig. 1C). The distribu-
tion of stimulus 3, on the other hand, is very close to the neutral
criterion at zero, and its contribution to the ORF changes a lot
around the peak (Fig. 1A and B); hence, extinguishing it will lead
to a larger shift of the ORF’s peak (Fig. 1E). Qualitatively, if sub-
jects have an algorithm for setting the criterion such that it moves
towards the optimal criterion, we would expect that the criteria for
the six conditions (c(E1) to c(E6)) are ordered in the following way:
c(E3) < c(E2) < c(E1) < c(E6) < c(E5) < c(E4) (as shown in Fig. 1C–H).
Because the S1/S2 response ratio increases with increasing crite-
rion position, we expect the same order for the S1/S2 response ratio.
Assuming six distributions with equal distances between neigh-
boring stimuli, quantitative predictions for the optimal criterion
position can be computed numerically, and the results of these
computations are shown in Fig. 1 (also see supplementary Matlab
code).1

However, these predictions should be highly counterintuitive
for anyone familiar with animal learning theory. After all, an
observer performing the task with sensitivity as depicted in Fig. 1A
earns a substantial fraction (close to 40%) of overall reinforcement
in trials in which stimuli 1 and 6 are presented, as these are easiest
to classify. In consequence, extinction of responding to stimuli 1
and 6 entails a larger loss of reinforcers than extinction to stimuli 3
and 4. A vast body of literature shows that animals are highly sen-
sitive to changes in the frequency of positive reinforcement and
that magnitude or probability of positive reinforcement is mono-
tonically related to choice probability (Herrnstein, 1961; Reynolds,
1961; Nevin et al., 1975; McCarthy and Davison, 1981; Corrado
et al., 2005; Balci et al., 2009; Teichert and Ferrara, 2010; Stüttgen
et al., 2011b). Accordingly, since subjects lose more reinforcers from
category S1 in condition E1 than in E3, one would expect that S1
responses should decrease more in condition E1 than in condi-
tion E3. Similar considerations for the other conditions would lead

1 The ordinal prediction breaks down if the distance between the stimuli, i.e. the
overlap between the neighboring distributions, becomes very small (ca. d′ < 0.3). We
have set up the experiment such that the ordinal prediction holds.
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