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a b s t r a c t

Animals readily learn the timing between salient events. They can even adapt their timed responding to
rapidly changing intervals, sometimes as quickly as a single trial. Recently, drift-diffusion models—widely
used to model response times in decision making—have been extended with new learning rules that allow
them to accommodate steady-state interval timing, including scalar timing and timescale invariance.
These time-adaptive drift-diffusion models (TDDMs) work by accumulating evidence of elapsing time
through their drift rate, thereby encoding the to-be-timed interval. One outstanding challenge for these
models lies in the dynamics of interval timing—when the to-be-timed intervals are non-stationary. On
these schedules, animals often fail to exhibit strict timescale invariance, as expected by the TDDMs and
most other timing models. Here, we introduce a simple extension to these TDDMs, where the response
threshold is a linear function of the observed event rate. This new model compares favorably against
the basic TDDMs and the multiple-time-scale (MTS) habituation model when evaluated against three
published datasets on timing dynamics in pigeons. Our results suggest that the threshold for triggering
responding in interval timing changes as a function of recent intervals.

This article is part of a Special Issue entitled: SQAB 2012.
Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Humans and other animals are exquisitely sensitive to the tim-
ing of rewards in a wide range of situations (for reviews, see Buhusi
and Meck, 2005; Grondin, 2010). Most timing theories attempt
to explain the steady-state behavior that emerges after extensive
experience with the same interval duration (e.g., Gibbon, 1977;
Killeen and Fetterman, 1988; Machado, 1997; Matell and Meck,
2004), as in the peak procedure (Catania, 1970; Roberts, 1981).
Under these static conditions, timed responding usually exhibits
timescale invariance: response-time distributions are strictly pro-
portional to the timed interval. The dynamics of timing, however,
including the initial acquisition period and changes in contingen-
cies, have tended to receive less attention (but see Staddon and
Higa, 1999; Balsam et al., 2002; Ludvig et al., 2012). In this paper, we
introduce a new extension of time-adaptive drift-diffusion mod-
els (TDDMs), which deals with both the steady-state and dynamic
features of interval timing.
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In nature, rewards do not always appear with a fixed regu-
larity. An environment where important time intervals are not
stationary might select for animals that can adapt their time judg-
ments rapidly. Studies using schedules with systematically varying
intervals have largely supported this conjecture. For example, on
cyclic-interval schedules, successive intervals vary according to a
periodic function. Animals trained under these schedules adapt
their post-reinforcement pause rapidly, as if tracking the preced-
ing interval. Fig. 1 shows three example schedules where animals
display this tracking: arithmetic ascending and descending (Innis
and Staddon, 1971), sinusoidal (Higa et al., 1991) and square-wave
sequences of intervals (Ludvig and Staddon, 2004). This track-
ing often occurs with a lag of only a single trial and sometimes
even anticipates the next interval (e.g., Church and Lacourse, 1998;
Ludvig and Staddon, 2005). This rapid temporal tracking presents
a significant challenge for static timing models.

A second challenging feature of these cyclic-interval schedules
is that the data often fail to exhibit the timescale invariance typi-
cal of interval timing on static schedules (e.g., Gallistel and Gibbon,
2000) though not universally (see Zeiler and Powell, 1994; Ludvig
et al., 2008; Kehoe et al., 2009). With static schedules, for exam-
ple, doubling the to-be-timed interval will usually result in timed
responses that are both twice as long and twice as variable (e.g.,
Schneider, 1969; Gibbon, 1977). On dynamic schedules, in contrast,
longer intervals often elicit proportionally shorter pauses (e.g., Innis
and Staddon, 1971; Higa et al., 1991; Ludvig and Staddon, 2004,
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Fig. 1. Interval cycles and sample data from the three experiments modeled in this paper: INS71 (Innis and Staddon, 1971), HWS91 (Higa et al., 1991), and LUS04 (Ludvig
and Staddon, 2004).

2005). The right panel of Fig. 1 illustrates how, on cyclic sched-
ules, when the interval varies across a threefold range (from 30 to
90 s) the post-reinforcement pause less than doubles. This depend-
ence of response timing on the absolute timescale poses a second
challenge for timing theories.

One newly developed timing theory seems particularly well-
suited to deal with these timing dynamics because of its ability
to learn rapidly: the time-adaptive drift-diffusion models (TDDMs;
Rivest and Bengio, 2011; Simen et al., 2011). Basic drift-diffusion
models (DDMs) are the most widely used process model of real-
time decision making (Ratcliff, 1978; Ratcliff and Rouder, 2000).
In a DDM, decisions are made by accumulating noisy evidence
(modeled as a random walk with drift) until a threshold is reached,
eliciting a response. One strength of this class of models is that
they assume variability within trials in several components of
processing, making it possible to study those components in isola-
tion and to make real-time predictions. These features make DDMs
particularly well suited to model both measures of accuracy and
response-time distributions (Ratcliff, 2002; Ratcliff and McKoon,
2008; Leite and Ratcliff, 2010). Moreover, strikingly, noisy ramp-
ing neural activity that matches the noisy evidence accumulation
process in a DDM can be seen in certain cortical areas during
decision-making tasks (Bogacz, 2007; Gold and Shadlen, 2007;
Rushworth et al., 2011). As noted by Leon and Shadlen (2003), this
activity shares some properties with interval timing and could be
a potential neural substrate for timing in monkeys.

Recently, two similar formal extensions of this DDM framework
to interval timing were introduced: the adaptive drift-diffusion
process (ADDP, Rivest and Bengio, 2011) and the stochastic ramp
and trigger (SRT, Simen et al., 2011). Though independently devel-
oped, the ADDP and the Level-4 SRT models are almost identical,
and we refer to them by the joint name of TDDMs (time-adaptive
DDMs). Both models extend the DDM by incorporating a learning
rule that allows for rapid adaptation of the drift rate to the expe-
rienced time interval. These TDDMs can even adapt to a change in
experienced time intervals as rapidly as a single trial. One potential
limitation of these TDDMs, however, is that timescale invariance is
built right into the algorithm. As a result, whether these models can
account for dynamic timing data, which often lack such invariance,
is unclear.

In the TDDMs, the memory of recent intervals is stored in the
drift rate, which controls the slope of the signal over time. A change
in the experienced intervals leads to a change in the drift rate
(i.e., the accumulator slope). Interestingly, a similar change in the
slope of the firing rate of neurons has been observed during timing
tasks in the posterior thalamic region in rats (Komura et al., 2001)
and multiple cortical areas in monkeys (Leon and Shadlen, 2003;
Reutimann et al., 2004; Lebedev et al., 2008). The TDDMs have also

been shown to be a reasonable approximation of more complex
networks of spiking neurons (Simen et al., 2011).

In the timing literature, the only major model that explicitly
contends with interval timing dynamics is the multiple-time-scale
(MTS) habituation model (Staddon and Higa, 1999; Staddon et al.,
2002). The MTS model uses a decaying memory trace to keep track
of time. This memory trace is made up of a sum of decaying units
that increases in activity when a reward is presented. A response
threshold is updated at every trial to correspond to the level of
decay in the memory trace at the moment the reward was last
seen. This dynamic threshold enables MTS to reproduce the track-
ing behavior observed in cyclic schedules such as those shown in
Fig. 1.

In this paper, we systematically compare the performance of
the TDDMs and MTS on three different sets of dynamic timing data
in pigeons from the published literature (Innis and Staddon, 1971;
Higa et al., 1991; Ludvig and Staddon, 2004). These datasets use
different cyclic-interval schedules and are fairly representative of
the literature on the dynamics of interval timing. Because of the
dependence on absolute timescales in the timing measures, MTS is
able to better match the pigeon data than the basic TDDM models.
Motivated by this shortcoming of the basic TDDM, we introduce a
modified TDDM with a threshold that depends linearly on the slope
of the drift rate (the LT-TDDM). This modified TDDM matches the
timing data from pigeons as well as or better than MTS in most
experiments.

2. Methods

2.1. Model specifications

2.1.1. Time-adapting drift-diffusion model (TDDM)
A drift-diffusion process consists of a noisy signal randomly

drifting over time but tending toward a particular direction as dic-
tated by its drift rate. In the TDDM implementation, this signal ϕ(t)
starts at 0 at stimulus onset, and thus serves as the internal rep-
resentation of elapsed time t from stimulus onset. This drifting
process is analogous to an accumulator that continuously inte-
grates time at a drift rate w with noise ε(t):

ϕ(t) = ϕ(t − 1) + w�t + ε(t) (1)

where �t is the time step used to simulate the continuous process
and ε(t) is Gaussian noise with mean 0 and variance �2 [N(0,�2)].
On reward, the signal ϕ(t) is reset to 0. The signal has an upper
absorbing boundary at 1, meaning that once ϕ(t) reaches 1, it stays
there until reset by a reward. To achieve Weber’s law, whereby
the variance in responding is proportional to the mean (Gibbon,
1977), the noise variance �2 must equal ˇ2w�t (Rivest and Bengio,
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