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h i g h l i g h t s

�We develop a data-driven method for the battery capacity estimation.
� Five charge-related features that are indicative of the capacity are defined.
� The kNN regression model captures the dependency of the capacity on the features.
� Results with 10 years’ continuous cycling data verify the effectiveness of the method.
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a b s t r a c t

Reliability of lithium-ion (Li-ion) rechargeable batteries used in implantable medical devices has been
recognized as of high importance from a broad range of stakeholders, including medical device manufac-
turers, regulatory agencies, physicians, and patients. To ensure Li-ion batteries in these devices operate
reliably, it is important to be able to assess the battery health condition by estimating the battery capac-
ity over the life-time. This paper presents a data-driven method for estimating the capacity of Li-ion bat-
tery based on the charge voltage and current curves. The contributions of this paper are three-fold: (i) the
definition of five characteristic features of the charge curves that are indicative of the capacity, (ii) the
development of a non-linear kernel regression model, based on the k-nearest neighbor (kNN) regression,
that captures the complex dependency of the capacity on the five features, and (iii) the adaptation of par-
ticle swarm optimization (PSO) to finding the optimal combination of feature weights for creating a kNN
regression model that minimizes the cross validation (CV) error in the capacity estimation. Verification
with 10 years’ continuous cycling data suggests that the proposed method is able to accurately estimate
the capacity of Li-ion battery throughout the whole life-time.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Capacity, which quantifies the available energy stored in a fully
charged Li-ion battery cell, is an important indicator of the state of
health (SOH) of the cell [1,2]; remaining useful life, also called
remaining longevity, refers to the available service time that is left
before the capacity fade reaches an unacceptable level [3–5]. It is
important to accurately estimate these two parameters in order
to monitor the present battery SOH and to enable failure preven-
tion through timely maintenance actions.

Recent literature reports a variety of approaches to estimate the
capacity of Li-ion battery. In general, these approaches can be

categorized into the adaptive filtering approach [1,2,6–9], the cou-
lomb counting approach [10–12], the neural network (NN)
approach [13,14] and the kernel regression approach [15–17].
Joint/dual extended Kalman filter (EKF) [1] and unscented Kalman
filter [2,6] were employed to estimate the state of charge (SOC),
capacity and/or resistance of Li-ion battery. To improve the perfor-
mance of joint/dual estimation, adaptive measurement noise mod-
els of the Kalman filter were developed to separate the sequence of
SOC and capacity estimation [7]. A multiscale scheme with EKF [8]
was developed that decouples the SOC and capacity estimation
with respect to both the measurement- and time-scales and
employs a state projection schedule for accurate and stable
capacity estimation. Most recently, a data-driven multi-scale EKF
algorithm was developed that leverages the fast-varying character-
istic of SOC and the slow-varying characteristic of capacity, with an
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aim to achieve accurate SOC and capacity estimation in real-time
[9].

The coulomb counting approach estimates the capacity by a
simple integration of current over time. An enhanced coulomb
counting approach was developed to estimate the capacity of a
Li-ion cell with dynamic re-calibration after the cell is fully charged
or discharged [10]. The coulomb counting approach provides a
simple way to compute the capacity but requires accurate current
measurement and, often, a full charge/discharge cycle to be
exercised. This approach is typically used, in a well-controlled
experiment, to provide a benchmark for evaluating a more sophis-
ticated capacity estimation approach. Two recently developed
approaches employed the coulomb counting approach to estimate
the battery capacity based on the difference in the SOC value
before and after partial charge/discharge [11,12].

The NN approach basically builds a network structure of
interconnected ‘‘neurons’’ to model the dependency between the
measureable features (e.g., cell terminal voltage, current and tem-
perature) and the cell capacity. The recurrent NN were employed
to estimate the two SOH-related parameters, namely the capacity
and equivalent series resistance, of a high-power-density Li-ion
cell based on the temperature, current, SOC variations and previous
cell behavior [13] and achieved good accuracy in the SOH estima-
tion over hundreds of accelerated ageing cycles. The Hamming NN
was applied to identifying the representative capacity pattern
(from a set of training cells with known capacities) that most clo-
sely matches that of a testing cell whose capacity is unknown and
to be estimated [14].

The kernel regression approach models the non-linear relation-
ship between the measureable features and the cell capacity by
way of kernel functions. Kernel regression techniques that were
employed to estimate the capacity of Li-ion battery include sup-
port vector machine (SVM) [15] and relevance vector machine
(RVM) [16,17], both of which are machine learning techniques.
SVM was used to predict the SOC, capacity fade and power loss
of Li-ion battery based on the baseline data collected from refer-
ence performance tests [15]. RVM is a Bayesian approach to kernel
regression and produces estimations in a probabilistic manner. The
extreme sparsity of the estimations by RVM allows one to make
estimations for new observations in a highly efficient manner. An
intelligent RVM-based method was proposed to estimate the
SOH of Li-ion battery based on the sample entropy feature
extracted from the discharge voltage measurements [16]. A Bayes-
ian framework combining RVM and the particle filter was proposed
for tracking the capacity fade of Li-ion battery and predicting the
remaining useful life [17].

Although a large number of capacity estimation methods have
been developed, research efforts are still in great need to develop
simple, but accurate, methods that enable life-time tracking of
capacity fade based on readily available measurements (i.e.,
voltage, current and temperature). In this study, we develop a
data-driven method that estimates the capacity of Li-ion battery
based on the charge voltage and current curves. First, five charac-
teristic features that are indicative of the capacity are extracted
from the charge curves. These features can be easily computed
based on the voltage and current measurements. Then, the
k-nearest neighbor (kNN) regression is used to build a non-linear
kernel regression model, with an aim to capture the complex
dependency of the capacity on the five extracted features.
The kNN regression, as a similarity-based technique, predicts
the response of a testing point by averaging the responses of the
k-nearest neighbors to the point in a weighted manner. Finally,
particle swarm optimization (PSO) is adapted to finding the opti-
mal combination of feature weights for creating a kNN regression
model that minimizes the cross validation (CV) error in the capac-
ity estimation. 10 years’ continuous cycling data obtained from

eight Li-ion prismatic cells are used to verify the effectiveness of
the proposed method in the capacity estimation over the life-time.
This paper is organized as follows. Section 2 presents the funda-
mentals of the proposed data-driven method. The approach is
applied to estimating the capacity of Li-ion battery used in
implantable medical devices. Section 3 discusses the experimental
results of this application. The paper is concluded in Section 4.

2. Technical approach

Given the basic measurements (voltage, current and charge
capacity) of a Li-ion battery cell during charge, we aim at estimat-
ing the cell capacity by using a data-driven method. In the method,
five characteristic features that are indicative of the capacity are
extracted from the basic measurements obtained during charge
and the kNN regression technique is employed to learn the rela-
tionship between the capacity and the five charge-related charac-
teristic features. Section 2.1 describes the five features.
Section 2.2 discusses the use of the kNN regression to build a ker-
nel regression model that approximates the non-linear relation-
ship between the capacity and the features. In Section 2.3, PSO is
adapted to finding the optimal combination of feature weights that
are used in the kernel regression model.

2.1. Feature extraction

Typical voltage and current curves of a Li-ion battery cell during
a charge cycle is shown in Fig. 1. The cell enters the charge stage
after being discharged to a certain state of charge (SOC) level. A
standard charge protocol comprises of two charge steps, the con-
stant current (CC) charge step and the constant voltage (CV) charge
step. During the CC charge step, the cell is charged at a predefined
constant current until the cell terminal voltage reaches the charge
cutoff voltage, Vmax. Right after the CC charge step, the cell enters
the CV charge step where the cell terminal voltage is held at Vmax

until a predefined time limit is reached. Accordingly, the total
charge capacity can be divided into two parts, the CC charge capac-
ity and the CV charge capacity. It is noted that the CV charge capac-
ity typically accounts for only a very small portion (e.g., less than
5%) of the total charge capacity. We also note that, in practice,
the Li-ion battery cell in an implanted medical device may not
experience a complete charge (i.e., after the cell is full discharged).
If the patient carrying the device charges the cell before its com-
plete depletion, the cell will start charge at a partially discharged
state.

Five features (see Fig. 1) that are representative of charge curves
are chosen as the inputs to the kNN regression model. These five
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Fig. 1. Five charge-related features in an illustrative charge cycle.
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