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a b s t r a c t

Catania (2005) found that a computational model of the operant reserve (Skinner, 1938) produced real-
istic behavior in initial, exploratory analyses. Although Catania’s operant reserve computational model
demonstrated potential to simulate varied behavioral phenomena, the model was not systematically
tested. The current project replicated and extended the Catania model, clarified its capabilities through
systematic testing, and determined the extent to which it produces behavior corresponding to matching
theory. Significant departures from both classic and modern matching theory were found in behavior
generated by the model across all conditions. The results suggest that a simple, dynamic operant model
of the reflex reserve does not simulate realistic steady state behavior.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The Catania operant reserve computational model

Catania (2005) presented a computational model of behavior
based on Skinner’s (1938) theory of the operant reserve. The model
used only low level, theoretically based rules to animate a digital
organism’s behavior. In brief, the principle of the operant reserve is
that organisms have a “reserve” of responses that contains the total
remaining responses for a particular behavior. When the reserve is
empty, the behavior is extinguished. When the reserve is full, the
organism will emit responses at a high rate, which will decline by an
amount proportional to the level of the reserve. Responses deplete
the reserve, while reinforcements replenish it (Skinner, 1938).

Using this relatively simple concept, Catania (2005) developed a
computational model of behavior. Some details were operational-
ized differently from the original Skinnerian model, however. First,
rate of behavior emission was implemented by specifying that the
probability of emission at any time-point was a direct function
of reserve level. With a full reserve, there was a 100% probabil-
ity of behavior being emitted. Likewise a reserve that was 50% full
would correspond to a 50% probability of a behavior being emitted
and so on. Second, although the amount each behavior emission
depleted the reserved was fixed, Catania used a type of memory
decay function to determine how much each reinforcement replen-

∗ Corresponding author at: 36 Eagle Row, Atlanta, GA 30322, United States.
Tel.: +1 404 668 1673.

E-mail address: jpberg@emory.edu (J.P. Berg).

ished the reserve. The decay function determined the amount the
reserve level increased as a function of responses that immediately
preceded reinforcement. This essentially gave the digital organ-
ism short term memory. Because the function decreased with time
(i.e., decayed), responses closest in time to the reinforcement added
more to the operant reserve than did responses that occurred fur-
ther back in time. At some point, determined by the decay function,
a previous response would add nothing to the operant reserve
because it was too distant from the time at which reinforcement
occurred. To avoid overlapping decay functions, Catania did not
extend the decay function past a previous reinforcement. Thus if
reinforcement occurred at Time 1, followed shortly by another
reinforcement at Time 2, the behaviors previous to the Time 1
reinforcement would not contribute to the Time 2 reinforcement.

Catania (2005) used the reciprocal decay function,

� = c

d0
, (1)

where � is the incremental contribution of a response, c is the max-
imum possible incremental contribution of a response, and d0 is the
time from the reinforcement event to the response. Reinforcement
events were understood to occur at the time-step immediately fol-
lowing a response, making the minimum value of d0 equal to one.
The total increment to the reserve at each reinforcement event
was the summation of the individual contributions of all previ-
ous responses, provided a previous reinforcement event did not
truncate the decay function. Catania considered alternative func-
tion forms such as exponential and hyperbolic but implemented
the reciprocal form for computational simplicity.

Catania (2005) simulated behavior on random interval (RI), ran-
dom ratio (RR), fixed interval (FI), concurrent, and several other
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Table 1
Simple decay function forms and constant, c, conversion factors.

Function Equation Conversion factor

Reciprocal � = c

d0
, (6) c = MIC

Exponential � = ce−d0 , (7) c = e × MIC

Hyperbolic � = c

1 + d0
, (8) c = 2 × MIC

Linear � = −d0 + c,(9) c = MIC

MIC: maximum individual contribution.

schedules of reinforcement. However, no systematic method was
used to run simulations, report data, or evaluate the effectiveness
of the model. Catania supported the viability of the model primar-
ily by presenting qualitative observations of extinction curves and
response patterns for behavior on various schedules. The published
analyses were also not representative of all the model’s behavior.
Catania admittedly only published selected results that provided
evidence the simulated contingencies could be implemented, and
that correspondence to live-organism behavior could be obtained.
Few analyses were quantitative and those that were primarily con-
sisted of illustrations that some but not all results were similar
to live-organism behavior. Catania (2005) did report some consis-
tency with matching theory but again the published analyses were
not extensive; they merely demonstrated that successful outcomes
were possible. The purpose of the research reported in the present
article was to evaluate the viability of the model more systemati-
cally.

1.2. Purpose of the current project

The current project attempted to replicate the operant reserve
model proposed by Catania (2005), extend the model by testing
alternate decay function forms, systematically test the effect of the
model’s parameters on behavior, and quantitatively evaluate the
model’s performance.

In addition to the reciprocal decay function used by Catania
(2005), simple exponential, hyperbolic, and linear functions were
implemented and evaluated for their impact on the model’s behav-
ior. Table 1 lists the simple decay functions used in the current
project. The exponential and hyperbolic function forms were cho-
sen based on their frequent occurrence in the memory (Page
and Norris, 1998) and learning (e.g., Catania and Shimoff, 1996;
Killeen, 1994; Mazur, 1987) literatures. In contrast, linear functions
traditionally have not been observed in memory decay or delay-
to-reinforcement studies. However, some lines of research have
pointed to the role of linear decay functions in short term mem-
ory and are supported by neurological data (e.g., Tarnow, 2009).
Although our understanding of how memory decays, and what
function form this decay takes, is limited, dynamic computational
models have the advantage of being able to test and directly com-
pare different possibilities because all other parameters can be held
constant in the computational environment.

1.3. Determining correspondence with live organism data

One challenge with computational models is how to accurately
evaluate model performance and determine its correspondence
with live organism data. Although there are a number of qualitative
methods for evaluating performance, such as visual examination of
a cumulative response record, these methods are subject to bias. A
quantitative approach using a matching analysis, like that used by
McDowell (2004) in his evaluation of a computational model of
selection by consequences, provides a more systematic method.

A wide range of live organism behavior at equilibrium has been
shown to be described by the mathematical function,

R = kr

r + re
, (2)

originally proposed by Herrnstein (1970) (McDowell, 1988). This
function is a rectangular hyperbola where R is the response rate, r
the reinforcement rate, k the maximum response rate, and re the
reinforcement rate due to extraneous behavior. Eq. (2) is one equa-
tion of matching theory, which accounts for a large percentage
of the variance in single-alternative, live animal data (McDowell,
2005). As is well known, related functions account for behavior on
concurrent schedules (Herrnstein, 1970).

Despite the success of matching theory (i.e., Eq. (2)), recent work
by McDowell (2005) has shown that the alternative, but related
form,

R = kra

ra + (ra
e /b)

, (3)

consistently outperforms Eq. (1) in terms of percentage variance
accounted for (pVAF) and the random distribution of residuals from
fits to live organism data. Eqs. (2) and (3) differ in terms of the
exponent, a, and bias parameter, b. The difference follows from the
functions from which Eqs. (2) and (3) were derived. Eq. (2) was
derived from the original matching equation,

R1

R1 + R2
= r1

r1 + r2
, (4)

where the Rs refer to the rates of responding and the rs refer
to the rates of reinforcement for each alternative of a two-
alternative concurrent schedule (Herrnstein, 1970). Although this
equation originally provided a good description of live-organism
data (Herrnstein, 1961) it could not account for certain types of
behavioral phenomena such as undermatching and bias (Baum,
1979). Thus, power function matching,

R1

R2
= b

(
r1

r2

)a

, (5)

with the additional parameters, a and b, was proposed (Baum, 1974;
Staddon, 1968, 1972). Eq. (5) and equations derived from it (includ-
ing Eq. (3)) have been referred to as “modern matching theory”
as opposed to “classic matching theory”, which consists of Eq. (4)
and equations derived from it (including Eq. (2)) (McDowell, 2005).
McDowell argued that classic matching theory was false, but that
modern matching theory was consistent with all known data.

In the present study both classic and modern single-alternative
matching equations were used to evaluate the performance of the
operant reserve model. Two principal criteria were used to evaluate
goodness-of-fit, namely, R2, and the absence of systematic patterns
in the residuals. A systematic pattern in the residuals indicates that
a fitted function does not fully account for the variance in the data.
Together, these two criteria provide a powerful approach to deter-
mining whether the behavior generated by the model is consistent
with live organism data.

2. Methods

2.1. Subject

The participant was a digital organism having one class of behav-
ior that was governed by the principles of an operant reserve. The
probability that the behavior would be emitted at each compu-
tational tick was directly proportional to the current level of the
reserve. Responses decreased the reserve level while contingent
reinforcement increased the reserve level.
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