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a b s t r a c t

In the quantitative analysis of behaviour, choice data are most often plotted and analyzed as logarith-
mic transforms of ratios of responses and of ratios of reinforcers according to the generalized-matching
relation, or its derivatives such as conditional-discrimination models. The relation between log choice
ratios and log reinforcer ratios has normally been found using ordinary linear regression, which mini-
mizes the sums of the squares of the y deviations from the fitted line. However, linear regression of this
type requires that the log choice data be normally distributed, of equal variance for each log reinforcer
ratio, and that the x (log reinforcer ratio) measures be fixed with no variance. We argue that, while log
transformed choice data may be normally distributed, log reinforcer ratios do have variance, and because
these measures derive from a binomial process, log reinforcer ratio distributions will be non-normal and
skewed to more extreme values. These effects result in ordinary linear regression systematically under-
estimating generalized-matching sensitivity values, and in faulty parameter estimates from non-linear
regression to assume hyperbolic and exponential decay processes. They also lead to model comparisons,
which assume equal normally distributed error around every data point, being incorrect. We describe an
alternative approach that can be used if the variance in choice is measured.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

While we are all aware that every measurement we make has
an associated error variance, we generally pay only lip service to
this knowledge. We tend to assume, when conducting quantitative
analyses of behaviour, that each datum we obtain is a good esti-
mate of a true point that lies on some theoretical function. We know
each datum is likely to miss the “real” function, but we assume that
our datum is a sample from a normal distribution on the y axis
around a point on the “real” function and, furthermore, that the
variance of that distribution is the same at every point on the x
axis (the assumption of homoscedasticity). These are assumptions:
we do not know either of these assumptions to be the case from
empirical research, though, for example, Tustin and Davison (1978)
attempted to assess the assumption of homoscedasticity of log
behaviour ratios across changing log reinforcer ratios, and found no
evidence against the assumption. The two assumptions of normal-
ity and homoscedasticity are the standard assumptions required for
least-squares linear and non-linear regression, and have received a
lot of attention in relation to both inferential statistics and regres-
sion (see the recent review by Erceg-Hurn and Mirosevich, 2008).
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A third assumption made by least-squares regression is that the
independent variable (x) value for each data point is fixed and
has no variance (Davison and McCarthy, 1981). Both of the first
two assumptions are likely to be incorrect and, in any case, nei-
ther can be sustained without empirical research or theoretical
analysis. As we will show, least-squares fitting procedures are not
generally robust against violations of these assumptions. The third
assumption is simply not met by many, perhaps all, of our regression
analyses. Thus, some or all of the assumptions for linear regression
are likely to be violated, and the resulting regression parameter val-
ues will therefore be inaccurate, or even systematically biased, by
such violations.

Fitting a straight line to data in which the y axis is a proportional
(relative) measure must underestimate the slope of the relation
simply because the distributions of data around extreme propor-
tions (close to 0 and 1) are necessarily truncated. This problem is
often addressed by transforming the proportional measure to one
that is not truncated at the extremes, and for this we often use
the logistic transform, log (p/(1 − p)), as in generalized-matching
analyses. However, such a transform, as we show below, will likely
skew data-sampling distributions differently for each value of the
dependent variable, and will not result in a true estimate of the
slope of the relation. For example, if data are binomially distributed,
the assumption of homoscedasticity is not met by logistically trans-
formed proportional data. Thus, with 100 data, 1 standard deviation
around a probability of .5 is ±5 responses (45–55), a logistic range
from −0.087 to +0.087. With a true probability of .95 (logistic 1.28),
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1 standard deviation is ±2.18 responses, a logistic range from 1.11 to
1.54. Thus, logistic variances are not homoscadastic with probabil-
ity changes if the underlying distribution is binomial, and increase
as the probability deviates more from .5. Non-homoscedasticity
that is unrelated to probability value does not systematically bias
regression slope estimates, and simply increases the variance of
the slope estimate. But non-homoscedasticity that is systematically
and linearly related to the probability value will systematically bias
estimates of slope. The latter will occur with binomially distributed
data.

The third assumption – that each value of the independent vari-
able is fixed with no variance – may be true if we use the arranged
value of x, but will be untrue of we use the obtained (a sampled)
value of x. We might suppose that if arranged x is a probability, and
we expose an animal to each arranged x value for very many tri-
als until the mean obtained x value equals the arranged x value, it
will not matter whether the obtained or the arranged x was used
in regression—both could be taken as fixed with no variance. But
this situation, which we discuss further below, is not the end of the
story: first, the total N trials is likely to be made from a series of
sessional samples, containing many fewer trials. Second, if the ani-
mal had anything less than perfect memory for all previous events
that had occurred at this particular x, and no memory for what had
occurred for prior, different, values of x, the effective N may be much
smaller than a simple count of the trials. Thus, even when many tri-
als are conducted, variance in obtained, or effective, x remains. In a
system that learns and changes behaviour as a function of environ-
mental change, such an arranged proportional x can never be fixed
and have no variance. The wider question is whether an x value can
be constant with no variance in any system that learns.

The above argument implies that simply aggregating x over very
large numbers of trials, or sessions, to reduce its variance is not a sat-
isfactory solution to our problem. That practice might indeed make
ordinary least-squares regression more statistically defensible, but
it distances the measure of x out of all recognition from the inde-
pendent variable x that we understand to control behaviour. That
is, taking few but very large samples may make statistical sense,
but is behavioural folly.

These considerations suggest that, if we are trying to discover
the quantitative laws underlying behaviour, then we may be going
about fitting quantitative models in the wrong way. As a corollary,
we may not be obtaining correct information when we statistically
select one model against competing models using residual analysis
or a model-comparison approach, such as the Akaike information
criterion and related criteria (Burnham and Anderson, 2002). The
purpose of the present paper is to highlight the problems with cur-
rent practice, and to offer a new way of fitting data and assessing
quantitative models.

1.1. An example

We start with a concrete example that concerns an experiment
that arranges a series of different concurrent variable-interval (VI)
VI schedules with different reinforcer ratios for two response alter-
natives. The x variables are the logarithms of the obtained reinforcer
ratios (under the reasonable assumption that behaviour can only
be a function of what animals receive, not of what experimenters
arrange); the y variables are log response ratios, in each experimen-
tal condition. Both measures are usually averaged over a number of
sessions, often 5, conducted after choice has stabilized. We want to
fit the generalized-matching relation (Baum, 1974), which is

log
B1

B2
= a log

R1

R2
+ log c, (1)

where B1 and B2 are the response numbers, and R1 and R2 are
the obtained reinforcer numbers, on the alternatives subscripted

1 and 2. Since this is a linear relation, we use least-squares linear
regression—which means that the parameters a and log c are given
by the equation that minimizes the sums of the squares of the devia-
tions of the data points from the straight line (given as

∑
(yi − ypi)2,

where i is an index identifying each data point, yi is the measured
log choice, and ypi is the y value for each x value predicted by the
fitted line). That is, the sum of the squared deviations on the y axis
is minimized. Does this provide a good estimate of the system that
produced the data? No, it does not, because some of the assump-
tions of linear regression have not been met: the variances in the y
measures may not be homoscedastic (but see Tustin and Davison,
1978), they may not be normal, and x variance has not been taken
into account (Davison and McCarthy, 1981). We have fitted a line
according to a set of assumptions without demonstrating that we
have met those assumptions, so our reported values of sensitivity
and bias may be wrong. Moreover, they may be systematically and
predictably wrong.

In this particular example, we might be able to estimate some of
the things we do not empirically know, and which we have ignored
in the regression. First, we can recognize that the choice situa-
tion is a binary situation, and that if we were to assume for the
purposes of exposition that the binomial distribution applies (this
may be an oversimplification because responses usually occur in
runs, rather than as individual instances with a particular probabil-
ity [e.g., Nevin and Baum, 1980; Pear and Rector, 1979]), we could
estimate the y variance around each datum from

√
Np(1 − p), the

standard deviation of the number of responses on one alternative
given N total responses and an underlying probability p of responses
on that alternative. In probabilistic terms, this estimated variance is
symmetrical about the mean Np. But, in order to fit the generalized-
matching relation, we have logistically transformed the p values as
log [p/(1 − p)], which makes the distribution around the log (B1/B2)
data point asymmetrical, with a longer tail toward more extreme
values than toward less extreme values. This means that, while an
equal number of sample estimates will come from above and below
the “true” log (B1/B2), estimates that are more extreme than the
“true” value are likely to deviate from the “true” value by larger
amounts. Furthermore, the degree of asymmetry increases as log
(B1/B2) deviates further from 0. Fig. 1 shows y axis standard devia-
tions around a set of true data on a simple straight line. Because of
the logistic transformation of the probability of a B1 response, and
because the datum indicates a higher probability of B1 relative to B2,
the standard deviation above the datum is greater than the standard
deviation below the datum when y > 0, and vice versa when y < 0.

Fig. 1. Two standard deviations around a set of logistically transformed data
points derived from homoscedastic binomial distributions around each datum. Log
response ratios strictly match log obtained reinforcer ratios.
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