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Preface

SQAB 2005: Complexity and generalizability

Sometimes we have posed the following question to Ph.D.
students during their doctoral examination: “Assume that you
have run an experiment in which 20 data points have been col-
lected, and developed two models. Model A has 10 parameters
and accounts for 99% of the variance in the data. Model B has
two parameters and accounts for 85% of the variance. Now you
plan to replicate the experiment. If you use the parameters esti-
mated from the original data, which model do you expect will
account for more variance in the replication data, and why?”

The answer, of course, is Model B. Despite its nearly per-
fect fit to the original data, Model A contains a relatively large
number of parameters and their estimated values will almost cer-
tainly have been influenced by unsystematic or chance variation,
which will probably not be duplicated exactly in the replication.
By contrast, the simpler Model B is more likely to have captured
areal (and hence repeatable) relationship in the original data. In
the literature on statistical model selection, this is known as the
complexity—generalizability tradeoff (Pitt et al., 2002). The more
complex the model, in terms of its ability to describe a larger
set of potential outcomes, the less likely it is that the model’s
predictions will generalize. Given this tradeoff, optimal policy is
to select the model, which is just sufficiently complex to capture
the systematic variation in the data, but no more, in other words,
Occam’s razor.

Modelling has always been at the heart of the SQAB
enterprise, and there are some interesting implications of the
complexity—generalizability tradeoff when one considers the
changing technological environment in which we conduct our
research. When the first SQAB was held in 1978, the most com-
mon microprocessor CPU of the time for personal computers
(the 8086) had 29,000 transistors on a single silicon chip. By
2004, the Itanium 2 microprocessor contained 592,000,000 tran-
sistors, an increase of more than 20,000 times in just 26 years.
The exponential growth in chip density (with the number of
transistors per CPU doubling approximately every 2 years) is
known in the computer industry as Moore’s law, and illustrated
in Fig. 1. Increases in hard disk storage for personal comput-
ers have been even more dramatic. According to Kryder’s law,
shown in Fig. 2, hard disk capacity doubles approximately every
13 months. If this rate of increase is maintained over the next two
decades, it has been suggested that an individual could purchase
a $100 device which could store, in principle, the entire creative
works of every human who had ever lived as well as a real-time
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video capture of the individual’s lifetime! It is clear that we are
entering a brave new world, if we are not there already.

One application that has been enabled by the massive growth
in computing power is data mining, which has been defined as
“the science of extracting useful information from large data
sets or databases” (Hand et al., 2001). For many, data mining
has acquired sinister, Orwellian overtones, with major exam-
ples in the USA being the warrantless electronic spying by the
National Security Agency (NSA) and the Pentagon’s total infor-
mation awareness (TIA) program. But data mining is also widely
used by companies in order to develop sophisticated and detailed
models of consumer behavior, for example, what factors predict
an individual’s decision to switch from one bank to another.
Whether or not ‘Big Brother’ has finally arrived, one could
argue that these applications of data mining are fundamentally
non-scientific because they are only concerned with predicting
‘useful’ outcomes, not with understanding phenomena in gen-
eral.

Data mining may be a particularly salient example, but over-
all, the increase in desktop computing power represents a cor-
responding increase in the potential complexity of behavioral
models, as well as the data sets to evaluate those models. Our
heuristic for decision making remains unchanged (although not
unchallenged): p <.05. But because statistical power increases
with the square root of N, we have an ever greater ability to detect
smaller and smaller relationships that meet the criteria for ‘sig-
nificance’. This places even more responsibility on scientists to
make informed, strategic judgments about data, and not to rely
on algorithms or formal procedures for decision making. The
search for optimal data mining procedures may be scientific,
but science is not data mining. Science involves the detection
and identification of empirical regularities, and their organiza-
tion and explanation in terms of laws, models, and theories. It
goes beyond mere description of the data to achieve a deeper
level of understanding.

Most of the articles in this special issue with the proceedings
of the SQAB 2005 conference would not have been possible
with the computer technology that was available when our first
meeting was held in 1978. But they all illustrate, in various ways,
the strategic decision making that is essential for good science.

Psychophysics has always been a central concern for the
quantitative analysis of behavior, and two articles continue this
tradition. Machado and Arantes describe results of an exper-
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Fig. 1. Exponential increase in density of microprocessor integrated circuits for personal computers (Moore’s law). Shown are the number of transistors per integrated
circuit for Intel microprocessors released between 1971 and 2004. Data points fall closely on the bottom dashed line, indicating that transistor density has doubled
approximately every 24 months. Note: ordinate scale is logarithmic. Figure is in the public domain and downloaded from http://www.wikipedia.org/.

iment using an ingenious procedure in which pigeons were
initially trained to make two temporal discriminations: Choose
red after a 1 s signal and green after a 4 s signal; and choose blue
after a 4 s signal and yellow after a 16 signal. After pigeons
had learned this ‘double bisection’ task, they were trained on
a new discrimination involving the blue and green stimuli and
signals between 1 and 16 s in duration. For one group of pigeons,
blue choices were reinforced after 1 s signals and green choices
were reinforced after 16 s signals, whereas a second group was
trained with the reverse mapping. Machado and Arantes show
that two prominent models of timing, scalar expectancy theory
(SET) and learning to time (LeT) make contrasting predictions
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Fig. 2. Exponential increase in density of hard drives for personal computers
(Kryder’s law). Shown are the size (in gigabytes) of hard drives released by
various manufacturers between 1979 and 2004. The linear trend corresponds
to a doubling of disk capacity approximately every 13 months. Note: ordi-
nate scale is logarithmic. Figure is in the public domain and downloaded from
http://www.wikipedia.org/.

for the rate at which the two groups learn the new discrimina-
tion. Results supported the predictions of LeT, and suggest that
‘what is learned’ in a temporal discrimination includes not only
which stimulus to choose after a particular delay (i.e., learning
about S+) but also which stimulus not to choose (i.e., learning
about S—).

W.A. Roberts describes an experiment based on a simple
temporal bisection task, which investigates whether pigeons’
representation of time is logarithmic or linear. Of course, this
question is related to one of the most fundamental debates in all
of psychophysics: Fechner versus Stevens. In Roberts’ experi-
ment, pigeons were trained to respond to a red key if the duration
of a preceding houselight was between 1 and 8 s, and to respond
to a green key if the duration was between 9 and 165s. There
were some revealing asymmetries: near the midpoint, pigeons
were more accurate at higher than lower values (i.e., perfor-
mance was better on 9 and 10s than 7 and 8 s), whereas at the
extremes, pigeons were more accurate at lower values (perfor-
mance was better at 1-4 s than 13—-16 s). Roberts shows that these
results follow naturally from predictions based on a logarithmic
scale, specifically, the increasing compression in the time scale
as values increase, compared with a linear scale. It will be inter-
esting to see whether models based on linear representations
(e.g., SET) can provide a satisfactory account of Roberts’ data.

An analogy between natural selection mechanisms in
organic evolution and the acquisition and maintenance of
operant behavior was emphasized by Skinner and in many
subsequent treatments. The analogy is based on three fea-
tures: Variation, selection, and retention. Behavioral variants
may be differentially selected by consequences and the new
variants retained, perhaps to be further modified through
behavior—consequence interactions. In this way, for example,
completely new behaviors never seen in the initial repertoire
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