FISEVIER

Contents lists available at ScienceDirect

Fish & Shellfish Immunology

journal homepage: www.elsevier.com/locate/fsi

Short communication

Cloning and characterization of a novel *caspase-8*-like gene in *Crassostrea gigas*

Chunyan Li ^{a, b, 1}, Tao Qu ^{a, 1}, Baoyu Huang ^{a, b}, Peng Ji ^{a, b}, Wen Huang ^{a, b}, Huayong Que ^a, Li Li ^{a, **}, Guofan Zhang ^{a, *}

- a National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
- ^b University of Chinese Academy of Sciences, Beijing 100049, PR China

ARTICLE INFO

Article history:
Received 22 April 2015
Received in revised form
21 June 2015
Accepted 27 June 2015
Available online 2 July 2015

Keywords: Crassostrea gigas CgCaspase8-2 Apoptosis Immune response

ABSTRACT

Cysteine-dependent aspartate-directed proteases, or caspases, play key roles in apoptosis and immune defense. In this study, we cloned the first *caspase-8*-like gene (*CgCaspase8-2*) identified in the pacific oyster, *Crassostrea gigas*. The 2572-bp cDNA encodes a putative protein of 714 amino acids that contains two tandem death effector domains (DEDs) at the N-terminal, and P20 and P10 domains at the C-terminal. The conserved pentapeptide motif QACQG was also identified in the deduced *CgCaspase8-2* protein. Phylogenetic analysis indicated that *CgCaspase8-2* was clustered with initiator caspases in the invertebrate subgroup, but the similarity between *CgCaspase8-2* and other invertebrate *caspase-8s* was low. *CgCaspase8-2* protein was localized in the cytoplasm, and over-expression of *CgCaspase8-2* in HEK293T cells induced cell death, suggesting a role in apoptosis. Quantitative real-time PCR results demonstrated that *CgCaspase8-2* was widely expressed in various tissues and developmental stages, with the highest *CgCaspase8-2* expression levels detected in hemolymph and the blastula stage. Furthermore, *CgCaspase8-2* transcripts showed no change in response to a bacterial challenge but exhibited notable up-regulation post-poly (I:C) challenge, suggesting that *CgCaspase8-2* is specifically involved in immune responses against viruses. In summary, *CgCaspase8-2* is involved in both apoptotic and immune function.

1. Introduction

Apoptosis was first described in 1972 by Kerr [1]. It plays a key role in immune system homeostasis and function, pathogen defense, and self/non-self recognition [2]. Apoptosis is divided into intrinsic and extrinsic pathways based on the nature of initiating signals. Intrinsic apoptosis involves mitochondria and the endoplasmic reticulum, and occurs in response to cytotoxins and environmental stress [3]. The extrinsic pathway is activated through interactions between extracellular ligands and death receptors (DRs, e.g., Fas/CD95, TNFR, and DR4/DR5 [4]), which then initiate a

cascade through recruiting downstream adaptors that trigger caspases [5–7]. This pathway has been characterized in the amphioxus [8] and is therefore highly conserved in chordates.

Caspase-8, an initiator caspase, plays a critical role in the regulation of programmed cell death [9]. It is involved in the extrinsic apoptotic pathway through its association with Fas-associated protein with death domain (FADD) to form the death-inducing signaling complex (DISC). Apoptosis is executed when DISC triggers caspase-3 [10]. Moreover, caspase-8 has been implicated in other roles beyond apoptosis [11–13], especially in immune function [2,14–17]. Specifically, caspase-8 appears to mediate caspase-1 processing and innate immune defense in response to a bacterial blockade of NF-kappa B and MAPK signaling [14]. Studies investigating the immune function of this enzyme have focused on members of Mollusca in particular. Notably, the role of caspase-8 in anti-bacterial response has been demonstrated in Haliotis rufescens, Haliotis discus, Haliotis diversicolor, Mytilus galloprovincialis, and Crassostrea hongkongensis [18–22].

The Pacific oyster, *Crassostrea gigas*, is the first species of Mollusca to undergo whole-genome sequencing [23]. This oyster is of

^{*} Corresponding author. National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China.

^{**} Corresponding author. National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, PR China.

E-mail addresses: lili@qdio.ac.cn (L. Li), gfzhang@qdio.ac.cn (G. Zhang).

¹ These authors contributed equally to this work.

vital economic and ecological importance, with the highest production of all cultivated aquatic species [24]. However, *C. gigas* cultivation has suffered drastically from high mortality in recent years, due to a complex interaction of biotic and abiotic factors, with pathogen infection playing a key part [25]. The apoptosis system has been reported to be highly involved in molluscan immunity [4], but except for the characterization of some apoptosis related genes [2,4,18–22,26], we know little about the apoptotic pathway in this model organism, and indeed in marine mollusks as a whole.

To date, one *CgFADD* and *CgCaspase-3* gene, respectively located up- and downstream of the extrinsic apoptotic pathway, have been cloned and characterized in *C. gigas* [4,26]. Recently, a *caspase-8*-like gene (*ChCaspase-8*) has also been characterized in the closely related *C. hongkongensis* [21], prompting a homologous comparison to *C. gigas* that yielded two *caspase-8*-like genes. One gene was extremely similar to *ChCaspase-8* and was named *CgCaspase-8-1* (unpublished data), while the other was named *CgCaspase-8-2*. Owing to the importance of *caspase-8* in the extrinsic apoptotic pathway and immune response, these findings are of particular relevance to research on programmed cell death and molluscan immunity.

In this report, we cloned *CgCaspase8-2* to better understand its role in *C. gigas*, as preliminary analyses indicated differences from *ChCaspase-8* (unpublished data). We first compared its deduced protein sequence with other invertebrate and vertebrate model species, including with *C. hongkongensis*, to understand its function in a phylogenetic context. Next, we examined the subcellular localization of *CgCaspase8-2* protein and its ability to induce cell death. Furthermore, we detected *CgCaspase8-2* mRNA expression levels in multiple tissues, at different developmental larval stages, as well as post-bacterial and poly (I:C) challenges.

2. Materials and methods

2.1. Study subjects, tissue collection, and cell culture

Live Pacific oysters were bought from Qingdao, Shandong province, China, and cultured in seawater tanks at 22 °C \pm 1 °C for 7 days before treatment. To detect the tissue distribution of *CgCaspase8-2* transcripts, samples of hemolymph, adductor muscles, mantles, gills, gonads, and labial palp were collected from six healthy oysters. To investigate the role of *CgCaspase8-2* at different developmental stages, we collected larval samples of the following stages: fertilized egg (0 h post-fertilization), blastula (5 h post-fertilization), gastrula (8 h post-fertilization), trochophore (12 h post-fertilization), D-shaped veliger (24 h post-fertilization), umbo veliger (8 days post-fertilization), and pediveliger (35 days post-fertilization) larva. Seawater temperature was maintained at 23 °C + 1 °C.

Phosphate buffer solution (PBS, pH 7.2) containing *Vibrio alginolyticus* (strain no. MVM425) and polyinosinic-polycytidylic acid dsRNA (poly (I:C), InvivoGen) were used for the bacterial and simulated-viral challenges, respectively. For *V. alginolyticus*, many anti-bactirial genes has been reported to be upregulated after challenge [21,27–29]. The *V. alginolyticus* bacterial culture concentration was determined by measuring the optical density at wavelength 550 nm (1 unit at OD 550 is equivalent to 5×10^8 bacteria/mL) [25], while the working concentration of poly (I:C) was 1.0 mg/mL. We randomly divided 150 oysters into control (50 oysters) and experimental groups (100 oysters). Control oysters received 100-µL PBS injections into the adductor muscle. Experimental oysters were equally subdivided into bacterial or simulated-viral challenge groups and injected with 100-µL *V. alginolyticus* or poly (I:C), respectively. Since a number of immune-related genes in

oyster were detected in hemolymph after bacterial and viral challenges [4,27,29,30], the hemolymph of six oysters was randomly sampled from both experimental groups at 0, 6, 12, 24, 48, and 72 h post-challenge.

HeLa cells (ATCC, Manassas, USA) and HEK293T cells (ATCC, Manassas, USA) were grown in RPMI-1640 medium (HyClone, Logan, UT, USA) and DMEM/High Glucose medium (HyClone), respectively [26]. The former cell line is used for cell viability assays and the latter for visualizing subcellular localization. Both media were supplemented with 10% fetal bovine serum, penicillin (100 U/mL), and streptomycin (100 U/mL). Cells were cultured under a humidified atmosphere of 95% air and 5% CO₂ at 37 °C.

2.2. RNA extraction and cDNA cloning

RNA of C. gigas samples were extracted using TRIzol reagent (Invitrogen, USA) according to manufacturer protocol, cDNA was reverse-transcribed from 1 ug of total RNA in a 20-µL reaction mixture, using the PrimeScript RT reagent kit with gDNA Eraser (TaKaRa, Japan), following manufacturer protocol. Based on the predicted caspase-8 sequence in the C. gigas genome (GenBank accession number: CGI_10023960), we designed primers cas8F1 and cas8R1 to obtain the middle sequence of CgCaspase8-2. We then used the amplified fragment and applied RACE (rapid amplification of cDNA end) technology to obtain the 3' and 5' ends of CgCaspase8-2. For the 3' end, first-round PCR primers were cas8-3F1 and oligo (dT)-adaptor, while second-round primers were cas8-3F2 and anchor primer (AP). For the 5' end, first-round primers were cas8-5F1 and oligo (dG)-adaptor, while secondround primers were cas8-5F2 and AP. The 5' end cDNA was purified using the DNA purification kit (Shenggong, China) and a poly (C) tail was appended using terminal deoxynucleotidyl transferase (TaKaRa, Japan). All sequences for the primers used are listed in Table 1.

2.3. Sequence analysis of CgCaspase8-2

For *CgCaspase8-2*, the open reading frame (ORF) and amino acid sequences were predicted with the ORF finder and show translate tool in the sequence manipulation suite (http://www.bioinformatics.org/sms/index.html), respectively. The calculated molecular mass and the theoretical isoelectric point (pl/Mw) were

Table 1 Primers used in this study.

Name	Sequence	Function
cas8F1	ATGAATGATATAGAGACAGACAATAG	clone
cas8R1	TCACTTGAAGAAGAGTTTTTTCC	clone
cas8-5F1	CACGGACGTCAGAGTAAAC	5'RACE
cas8-5F2	CTCCGCCCTCTGTATCTT	5'RACE
Oligo (dG)-adaptor	GGCCACGCGTCGACTAGTACG10	5'RACE
AP	GGCCACGCGTCGACTAGTAC	RACE
cas8-3F1	ACAGGACTGGCGGGAAAACC	3'RACE
cas8-3F2	CAGGGAAGCTGGTTCGTCAA	3'RACE
Oligo (dT)-adaptor	GGCCACGCGTCGACTAGTACT16	3'RACE
cas8F2	GGACTCAGATCTCGAGATGAATGATA	clone
	TAGAGACAGACAATAG	
cas8R2	GAAGCTTGAGCTCGAGCTTGAAGAAG AGTTTTTTCC	clone
cas8RTF	CAGGGAAGCTGGTTCGTCAA	qRT-PCR
cas8RTR	CCCTCCAGTCGGGCGTTA	qRT-PCR
GAPDHF	TTCTCTTGCCCCTCTTGC	qRT-PCR
GAPDHR	CGCCCAATCCTTGTTGCTT	qRT-PCR
RS18F	GCCATCAAGGGTATCGGTAGAC	qRT-PCR
RS18R	CTGCCTGTTAAGGAACCAGTCAG	qRT-PCR
EFF	AGTCACCAAGGCTGCACAGAAAG	qRT-PCR
EFR	TCCGACGTATTTCTTTGCGATGT	qRT-PCR

Download English Version:

https://daneshyari.com/en/article/2431204

Download Persian Version:

https://daneshyari.com/article/2431204

Daneshyari.com