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a b s t r a c t

This paper examines the potential effects of Germany’s feed-in tariff policy for small roof-top solar PV
systems installed between 2009 and 2030. Employing a partial equilibrium approach, we evaluate the
policy by weighing the benefits from induced learning and avoided environmental externalities against
the social costs of promoting residential PV. We use a dynamic optimization model that maximizes social
welfare by accounting for learning-by-doing, technology diffusion, and yield-dependent demand. We find
a wide range of effects on welfare, from net social costs of 2014 million € under a ‘‘business as usual’’ sce-
nario to 7586 million € of net benefits under the positive prospects of PV’s development. Whereas the
‘‘business as usual’’ scenario underestimates actual price reductions, the positive scenario mirrors recent
price developments and feed-in tariffs in the German residential PV market.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Solar irradiation provides the largest renewable energy poten-
tial on earth and solar photovoltaics (PV) are considered a promis-
ing technological solution to support the global transformation to a
low-carbon economy and reduce dependence on fossil fuels. In re-
cent years Germany has become the world’s largest market for PV
with approximately 17.3 GW of installed capacity at the end of the
year 2010 [1]. Although it remains one of the most expensive en-
ergy generation technologies, several studies expect PV to become
competitive in the foreseeable future. Apart from progress in re-
search, these presumptions are based on learning effects in pro-
duction (learning-by-doing, LBD) as experience with PV
technologies accumulates. However, PV’s missing competitiveness
inhibits the realization of these learning effects and the associated
capital cost reduction. Thus, the expected benefits on a macroeco-
nomic level are suppressed by market failures and barriers from a
microeconomic view.

Incentives in the form of properly-designed renewable policies
can help to overcome the existing barriers. The German Renewable
Energy Sources Act (Erneuerbare Energien Gesetz, EEG) with its
feed-in tariffs has been especially successful for PV and other
renewable energy technologies as measured by market growth. It
guarantees a fixed price for PV-generated electricity over a period
of 20 years.1 Nevertheless, this development has not solely found
support in the political and scientific community. After the policy’s

implementation, the high costs of promoting PV in a country with
relatively low solar irradiation conditions, and the large profits re-
turned to PV investors gave rise to a lively debate about the EEG’s
economic efficiency and distribution effects for renewable energy
technologies. An outcome of the subsequent re-negotiation of the
EEG in 2008 and 2010 is an amendment that adjusts feed-in tariff
regulations for 2009–2012 according to Fig. 1. At first glance, the
re-negotiated EEG appears to be a flexible instrument with mar-
ket-oriented tariff degression rates. However, an examination of
the negotiation process suggests that the amendment is more polit-
ical compromise than sound economic policy [2].

This view could also be supported for EEG regulations in the
past. Findings in innovation economics indicate that induced PV
market growth has been too high to exploit learning effects opti-
mally. Schaeffer et al. [3] find that German PV module costs fell
at a lower rate than the global average for each doubling in PV
capacities. Neuhoff [4] also argues that growth rates should not
be excessive for an optimal utilization of learning effects. For the
last 8 years, Germany’s exploding growth rates in the PV market
have primarily resulted from the EEG’s feed-in tariffs. Studies of
previous EEG regulations calculating the social costs and benefits
for PV under existing feed-in tariff structures reach diverging con-
clusions [5,6]. Krewitt et al. [7] predict PV’s global developments,
but do not consider the German situation. Sandén [8] develops a
quantitative model to calculate PV’s future subsidy costs in OECD
countries on an aggregated level. While Nitsch [9] considers PV’s
role in the future German electricity portfolio and the attributed
social costs, he does not differentiate between types of PV installa-
tions. However, specific costs can vary considerably among small-
and large-scale installations [5]. A recent break-even analysis for
German PV systems by Bhandari and Stadler [10] focuses on PV’s
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grid parity using experience curves. They estimate learning costs,
but do not determine an optimal subsidy policy. Partial analyses
on avoided environmental externalities through PV power genera-
tion in Germany have also been undertaken [11,12]. Nevertheless,
these studies do not model consumer benefits from LBD, being a
major argument in favor of PV technologies.

This paper determines an economically efficient policy of future
feed-in tariffs for residential PV installations in Germany between
2009 and 2030. Among the supported systems, residential roof-top
installations show the highest specific investment costs and thus
obtain the highest feed-in tariffs among the EEG-promoted tech-
nologies today. Therefore, this market segment is of particular
interest for the subsequent cost-benefit analysis. Our inter-tempo-
ral model maximizes social welfare in a dynamic optimization ap-
proach, taking into account LBD and technology diffusion
processes. For each year consumer benefits from learning pro-
cesses and avoided environmental externalities are weighed
against the feed-in tariffs’ social costs to determine an efficient
remuneration scheme. Assuming a business as usual case, we find
that the support creates net social costs of about 2014 million €

(M€) whereas in scenarios assuming different developments
regarding economic growth and technological progress the net so-
cial benefits are 5689 M€ or 7586 M€, respectively.

The remainder of this paper is structured as follows. Section 2
reviews the concept of experience curves and empirical studies
quantifying learning effects in PV industries. These findings are ta-
ken into account in the model introduced in Section 3. Section 4
presents the data and develops scenarios reflecting possible alter-
native developments in the residential PV market. Section 5 dis-
cusses the results and Section 6 concludes.

2. Learning by doing

2.1. Theoretical considerations

Learning or experience curves are a common concept to model
technological progress in innovation economics. The concept is
widely used to predict PV’s future costs as a function of experience
with this technology. Although several functional forms have been
proposed to represent LBD [13], the most common approach is a
power function:

Cx ¼ C1x�b ð1Þ

with Cx being the costs required to produce the xth unit, and x rep-
resenting the cumulative production up to and including the xth
unit of production. In the PV industry, cumulated production is gen-
erally measured in units of produced power capacity (e.g., Mega
Watt peak, MWp). C1 denotes the costs required for producing the
first unit and b is the elasticity of unit costs with respect to cumu-
lative production volume. The parameter b is also known as the
learning or experience parameter.2 In its logarithmic form the rela-
tionship between costs and experience (represented as cumulated
production) becomes more apparent:

log Cx ¼ log C1 � b log x ð2Þ

Hence, double logarithmic graphs are often used to demon-
strate learning effects, where the graph’s slope is a measure of
learning or experience. Owing to the described cost development
for an increase in cumulative production, the learning parameter
b is also used to calculate the progress ratio (PR):

PR ¼ Cx2

Cx1

¼ C1x�b
2

C1x�b
1

¼ 2�b ð3Þ

for x2 = 2x1. The PR measures the cost decrease per doubling of
cumulated production. The learning rate (LR) is subsequently de-
fined as:

LR ¼ 1� PR ð4Þ

and is usually expressed as a ratio or percentage. The LR indicates
the savings in specific production costs after a cumulative doubling
in production output. Due to learning curves’ declining exponential
form, production costs will tend to zero in the long run. Hence, Köh-
ler et al. [14] point out that floor costs are often specified for learn-
ing curves, which act as a lower bound on costs when technologies
mature. Generally, cost predictions for PV do not apply floor costs
because PV is still a young technology with specific production
costs being far from zero in the foreseeable future.

As mentioned, a wide variety of learning or experience curves are
applied in energy economics for policy and scenario studies. Gritsev-
skyi and Nakicenovic [15] consider uncertainties in learning effects
by a stochastic model of technological change. Harmon [16] and
Frankl et al. [17] distinguish between regional and global learning
to construct experience curves for PV. Different methodological ap-
proaches to determine learning curves also exist. Schaeffer et al. [3]
use weighted and unweighted linear regressions on lognormal cost
and production data to infer learning curves. Staffhorst [18] differen-
tiates three types of learning curves concerning the measurement in
costs and experience. Using learning curves in techno-economic
models, the implementation of LBD also depends on the type of mod-
el, the production factors, and the number of goods under consider-
ation [19]. Recent implementations of LBD to account for
endogenous technological change in energy-environment-system
models are further discussed in Löschel [20], Grubb et al. [21], Kyp-
reos and Bahn [22], Vollebergh and Kemfert [23], Edenhofer et al.
[24], Pizer and Popp [25], and Clarke et al. [26].

2.2. Empirical learning effects in photovoltaic industries

The majority of studies focus on experiences in PV module pro-
duction (Table 1) that are determined by global learning effects.
However, a PV system also consists of wires, inverter, circuit break-
ers, safety switches, and other components needed for integrating
PV in the grid. Often, different regional standards, technologies and
network conditions make the attributed learning in balance-of-sys-
tem (BOS) costs a local or regional phenomenon. Thus, a more com-
prehensive approach to evaluate PV system costs differentiates
between specific costs for PV modules and all other system compo-
nents, subsumed as BOS. This approach is commonly used to model
PV cost predictions [16–18,27]. Schaeffer et al. [3] state that PV
installations should be treated as compound systems between glo-
bal (PV panels) and regional learning (BOS) because developments
in production costs for the different components can vary consid-
erably. They calculate separate LRs for inverters and remaining
BOS components in Germany and the Netherlands.

The majority of global experience curves in Table 1 show LRs be-
tween 18% and 22%. In contrast, LRs for single countries or regions
vary widely between 10% and 47%. According to Schaeffer et al. [3],
this can be explained by differences in national PV deployment pro-
grams and the associated installation numbers. Countries with
growth rates in PV capacity above the global average will show less
favorable LRs because module prices will decline at the same pace as
in other countries, but the number of doublings in installation capac-
ity will be higher than the international average. In the past this ef-
fect could be observed for countries with strong growth in PV
installations, e.g., Germany and the Netherlands. It needs to be as-
sessed if these findings apply to recent developments in Germany,

2 According to Clarke et al. [26], experience parameters additionally capture R&D,
spillover effects, economies of scale, and other price-decreasing factors. Therefore,
they are a generalization of learning parameters.
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