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a b s t r a c t

As tendons are loaded, they reduce in volume and exude fluid to the surrounding medium. Experimental
studies have shown that tendon stretching results in a Poisson’s ratio greater than 0.5, with a maximum
value at small strains followed by a nonlinear decay. Here we present a computational model that
attributes this macroscopic observation to the microscopic mechanism of the load transfer between
fibrils under stretch. We develop a finite element model based on the mechanical role of the
interfibrillar-linking elements, such as thin fibrils that bridge the aligned fibrils or macromolecules such
as glycosaminoglycans (GAGs) in the interfibrillar sliding and verify it with a theoretical shear-lag model.
We showed the existence of a previously unappreciated structure–function mechanism whereby the
Poisson’s ratio in tendon is affected by the strain applied and interfibrillar-linker properties, and together
these features predict tendon volume shrinkage under tensile loading. During loading, the
interfibrillar-linkers pulled fibrils toward each other and squeezed the matrix, leading to the Poisson’s
ratio larger than 0.5 and fluid expulsion. In addition, the rotation of the interfibrillar-linkers with respect
to the fibrils at large strains caused a reduction in the volume shrinkage and eventual nonlinear decay in
Poisson’s ratio at large strains. Our model also predicts a fluid flow that has a radial pattern toward the
surrounding medium, with the larger fluid velocities in proportion to the interfibrillar sliding.

� 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Tendons function as mechanical, load-bearing structures that
allow motion by transmitting forces from muscle to bone. The
composition and organizational structure of tendon are optimized
to allow its mechanical response for a range of stresses and strains.
Under tensile loading, tendon exhibits shrinkage of volume [1] and
fluid exudation to the surrounding medium [2,3]. By defining the
Poisson’s ratio as ðmeff ¼ ð1� DV=ðeV0ÞÞ=2Þ, where ðDV=V0 < 0Þ is
the negative relative volume change at a tensile strain ðeÞ, the
Poisson’s ratio for tendon is expected to be larger than 0.5.
Indeed, reported Poisson’s ratio for tendon is 1.65 ± 0.35 for human
hip joint ligament [4], 2.98 ± 2.59 for sheep flexor tendon [5], and
0.7 ± 0.52 for rat tail tendon fascicles [6]. Yet, mechanical models
replicating this experimental behavior have been limited.
Understanding the micromechanical response of tendon is

therefore important to fully describe its material behavior from
the macro to microstructural levels.

Tendons are composed of a dense extracellular matrix consist-
ing primarily of collagenous and noncollagenous components.
Modeling tendon as a distribution of fibrils embedded in a poroe-
lastic matrix where the matrix adopts a Poisson’s ratio within
the range of the homogenous isotropic materials (i.e. 0–0.5), pre-
dicts that tendons swell during tensile loading by absorbing fluid
from the surrounding medium. This behavior is in contrast to the
above experimental results [1–3] and to overcome this contradic-
tion in previous poroelastic studies, the measured macroscopic
Poisson’s ratio for the whole tendon (2.5 for sheep flexor [7] and
1.7 for rat tail [8]) was input as the microscopic Poisson’s ratio
for the extracellular matrix (ECM). These large Poisson’s ratios for
the ECM lead to the shrinkage of the matrix under tensile loading,
and as a result, such models are capable of explaining the fluid exu-
dation, although a concrete justification to equate the tendon and
ECM Poisson’s ratios has not been presented. In addition these
models are unable to predict the nonlinear variation of the
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Poisson’s ratio with strain; experiments have shown that tendons
exhibit a large Poisson’s ratio (�6) at low strains that decays at
high strains [9].

The biphasic behavior of tendon components implies that both
collagen fibrils and the non-collagenous matrix play a role in stress
transfer during uniaxial loading [10–17]. For example, proteogly-
cans (PGs) interact with and bind to type I collagen fibrils [18,19]
at discrete sites with their protein cores, and their associated gly-
cosaminoglycans (GAGs) extend into the interfibrillar matrix [19–
22]. Evidence for binding of the GAG chains to certain domains on
like molecules or to each other [23–26] suggests that GAGs may act
as interfibrillar-links that contribute to fibril–fibril communica-
tion. Although recent models [27] have suggested that the contri-
butions of PG-associated GAGs are greatest in the context of
short, discrete fibrils likely during tendon development and healing,
experimental studies in mature uninjured tendons have shown that,
enzymatic digestion of GAGs does not induce changes in mechan-
ical stiffness [15,16,28–30]. Still, the potential interfibrillar-linking
role of secondary collagen fibers such as type VI and XII or other
molecules such as elastin [31,32] must be considered.

In addition to the macromolecules, variation in the morphol-
ogy of the fibrils is a potential alternative mechanism that influ-
ences the pathway of the load transfer between the fibrils.
Collagen fibrils are predominantly aligned in parallel along the
direction of loading, in the form of the well-organized bundles
[33,34]. Among all the fibrils, electron microscopy has identified
smaller diameter fibrils that traverse and bifurcate with larger
diameter fibrils [17,35,36]. Experimental studies have shown that
under tensile loading, there is discrepancy between the strains
measured in the fibrils and applied to the tissue and this strain
is compensated by interfibrillar sliding [37–39]. These thin fibrils
bridging between aligned fibrils may regulate the interfibrillar
sliding and contribute to the force transmission mechanism
between fibrils [17]. Here we present a computational model to
show that the potential interfibrillar-linking contribution of the
bridging fibrils or macromolecules such as GAGs in combination
with the existing interfibrillar sliding, remarkably leads to the
fluid exudation and the Poisson’s ratio larger than 0.5 under ten-
sile loading.

Therefore, the objective of this study is to develop a microme-
chanical poroelastic model to (1) explain the experimental obser-
vation of large Poisson’s ratios and its variation with strain and
(2) quantify fluid flow directionality and velocity along fibrils.
Our model is based on the force transmission between the fibrils
through interfibrillar-linking elements which are modeled as
elastic springs. These interfibrillar-linkers can represent thin
fibrils that are bridging between the aligned fibrils or GAGs and
other potential interfibrillar-linking elements such as collagen
type VI and XII. Given the uncertainty in the current literature
about the frequency and stiffness of the bridging fibrils, we per-
form a parametric study on the elastic stiffness and density of
these interfibrillar-linkers. To produce the interfibrillar sliding,
fibrils in our model are modeled as discontinuous elements
embedded in the ECM. In this setting, under tensile loading, the
relative displacement between the adjacent fibrils can represent
the interfibrillar strain as observed in the experimental results.
The importance of the current model is in part to show that
while the Poisson’s ratio of the tendon constituents such as col-
lagen fibril and matrix can be within the range of the homoge-
nous isotropic materials (i.e. 0–0.5), yet the macroscopic
Poisson’s ratio is larger than 0.5. We used a two-prong approach,
incorporating both a three-dimensional finite element model to
predict the tendon Poisson’s ratio and the fluid flow direction
and velocity, as well as a simple shear lag model to explain the
micromechanical mechanism behind the observed Poisson’s ratio
variation with strain.

2. Methods and materials

Our finite element method (FEM) tendon model is comprised of
(i) a staggered distribution of collagen fibrils, (ii) interfibrillar-
linking elements between the fibrils which can represent bridging
fibrils or GAGs, and (iii) the ECM that envelopes all of the compo-
nents (Fig. 1). In this model, fibrils are assumed to be 1-D elastic
elements (with Young’s modulus, Ef and Poisson ratio, mf ) with
length ðLÞ, radius ðRf Þ and center-to-center distance of ðdf Þ. The
interfibrillar-linkers are also modeled as elastic springs with
stiffness ðKÞ and spacing (d) along the length of the fibrils (Table 1).

The third component, the ECM, is modeled as a biphasic porous
material that is saturated with fluid and is coherently bonded to
the fibrils. By applying mechanical loading to the ECM, a fluid pres-
sure gradient is created resulting in movement of the fluid. Darcy’s
Law was applied to connect the fluid flow velocity to the pressure
gradient in the ECM:

V
!
¼ � k

n
rP ð1Þ

In Eq. (1), V
!

is the fluid velocity field (m/s), P is the fluid pres-
sure (Pa), k is the ECM permeability (m4/Ns), and n is the matrix
porosity, defined as the volume fraction of the pores in the matrix.

The fluid flow is related to the deformation of the material
through the continuity equation

@evol

@t
þr � ð�krPÞ ¼ 0 ð2Þ

where evol is the volumetric strain of the matrix.
In addition, the mechanical equilibrium equation should also be

solved for the matrix

Fig. 1. (a) The finite element model consists of staggered fibrils (red rods)
interconnected with interfibrillar-linkers (springs) placed in a porous medium
(cyan). The coordinate system is placed at the center of the model with x-axis
directed along the fibril orientation, and y-axis perpendicular to it. (b) Under tensile
loading, interfibrillar-linkers exert a compressive force to the biphasic medium
(vertical arrows) and cause the fluid to flow radially outward from the encapsulated
matrix. The aspect ratio in the figure is not in scale.

Table 1
Definitions and values for symbols used in the model.

Symbol Definition Value References

L Fibril length 100 lm [25]
Ef Fibril Young’s modulus 1.5 GPa [25,42]
mf ; mm Fibril and matrix Poisson’s ratio 0.3 [42]
Gm Matrix shear modulus 0.1 MPa [5,8,40,41]
df Fibril center-to-center spacing 300 nm [25]
Rf Fibril radius 100 nm [25]
k Matrix permeability 3.08e�14 m4/Ns [8]
n Matrix porosity 2/3 [8,43]
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