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a b s t r a c t

This paper proposed a price forecasting system for electric market participants to reduce the risk of price
volatility. Combining the Radial Basis Function Network (RBFN) and Orthogonal Experimental Design
(OED), an Enhanced Radial Basis Function Network (ERBFN) has been proposed for the solving process.
The Locational Marginal Price (LMP), system load, transmission flow and temperature of the PJM system
were collected and the data clusters were embedded in the Excel Database according to the year, season,
workday and weekend. With the OED applied to learning rates in the ERBFN, the forecasting error can be
reduced during the training process to improve both accuracy and reliability. This would mean that even
the ‘‘spikes” could be tracked closely. The Back-propagation Neural Network (BPN), Probability Neural
Network (PNN), other algorithms, and the proposed ERBFN were all developed and compared to check
the performance. Simulation results demonstrated the effectiveness of the proposed ERBFN to provide
quality information in a price volatile environment.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Deregulating the power market creates competition and a trad-
ing mechanism for market players. It moves the market from a
cost-based operation to a bid-based operation [1,2]. Electricity
has become a commodity and the price could become volatile in
an energy market where sudden ‘‘spikes” could appear. Forecasting
prices accurately is an important task for producers, consumers
and retailers. In accordance with a price forecast, a balancing and
settlement system can be established for participants to maximize
profit with lower risks [3]. Price forecasting also helps investors in
better planning the Grids.

In the US, the Pennsylvania–New Jersey–Maryland (PJM) power
market [4] is commonly recognized as one of the most successful
market models. The PJM that operates the competitive market is
coordinated by an Independent System Operator (ISO) to deter-
mine the Locational Marginal Price (LMP) according to the status
of the system nodes. The LMP at each node then reflects not only
the price of voluntary bids but also the overhead of delivering en-
ergy to locations. Generally, the LMP includes three components:
an energy cost component, a transmission congestion component
and the marginal loss component. The LMP in a pool is different
for different locations while the energy cost can be identical for

all the nodes. A feasible and practical method for LMP forecasting
would provide better risk management for all market participants.

Many factors, including historical prices, system load, transmis-
sion flow and temperature, could impact the LMP. The loads and
prices in the wholesale market are mutually intertwined activities
[5]. Loads are heavily affected by weather parameters, so prices are
strongly volatile with the changing weather. Another factor is use
at various times of the day, week, month, season and year. Prices
could rise to a hundred times the normal value in reflecting this
volatility. In the PJM, the LMP is introduced at nodes. Congestion
occurs when a transmission flow exceeds its limits. Line flow infor-
mation becomes an important factor in price forecasting. It is com-
plicated to perform LMP forecasting, especially when trying to find
the best strategy in a world of uncertainties. Reported techniques
for forecasting day-ahead prices include time series models [6],
weighted nearest neighbors techniques [7], auto regressive inte-
grated moving average models (ARIMA) [8], Mixed ARIMA models
[9,10], k-factor GIGARCH process [11], and Markov models [12].
These approaches can be very accurate given sufficient information
and computation time; however, no approach has shown a satis-
factory performance in dealing with the spikes.

Recently, the Artificial Neural Network (ANN) has been applied
to forecast prices in various markets [13–19]. The ANN is a simple,
powerful and flexible tool for forecasting, providing better
solutions to model complex non-linear relationships than the tra-
ditional linear models. ANNs have weaknesses in the determina-
tion of network architecture and network parameters. Running in
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a dynamic environment, especially for online applications, a tradi-
tional ANN can become a bottleneck in adaptive applications [20].
Among ANNs, the Radial Basis Function Network (RBFN) [21] can
function as a classifier and forecaster, and it has the advantages
of a simple construct. However, a RBFN probably causes over-
learning due to large adjustable parameters. In order to improve
the issue, this paper has used the Orthogonal Experimental Design
(OED) to enhance the traditional RBFN.

The OED is an effective tool for robust design and engineering
methodology in optimizing process conditions which are mini-
mally sensitive to various causes of variations. The characteristics
of an OED are: (1) results obtained through few experiments, (2)
good recurrence of results in the same experimental environment,
(3) simple construction of mathematical model with the applica-
tion of an Orthogonal Array and (4) simple analytical procedure.
Combining the RBFN [21] and the OED [22] into an Enhanced RBFN
(ERBFN) has been proposed in this paper. The OED has been used to
adjust the parameters in the RBFN training stage to improve the
forecasting ability, and a good performance with a close spike
tracking capability can be seen. This paper has developed day-
ahead forecasts for electricity price using an ERBFN based on a sim-
ilar day PJM market model. The Mean Absolute Percentage Error
(MAPE), Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) obtained from the forecasting results have demonstrated
that the ERBFN can efficiently forecast the price for any day of
the week.

2. Orthogonal Experimental Design

The Orthogonal experiment uses a small amount of experimen-
tal data to construct a mathematical model derived from the
orthogonal experiment to calculate experiment values. The OED
contains two main parts, Orthogonal Array and factor analysis. In
engineering experiments, the cause that influences the result is a
factor of the Orthogonal Array, while various states of the factor
are called the ‘‘level number”. Factor analysis is carried out after
the Orthogonal Array set-up, and the ‘‘factor effects” of each factor
can be obtained from the analytical results. The impact of each fac-
tor on the experiment is deduced from those effects.

An orthogonal array with F factors and Q levels can be denoted
as LB (QF), where L denotes a Latin square, and B is the chosen num-
ber of combinations of levels. The notion of using orthogonal arrays
has been associated with the Latin Square from the outset. We let
LB (QF) = [ebf]B�F, where the fth factor in the bth combination has le-
vel value ebf and ebf 2 {1, 2, . . . , Q}. An example of an orthogonal ar-
ray can be seen as:

L4ð23Þ ¼

1 1 1

1 2 2

2 1 2

2 2 1

2
66664

3
77775: ð1Þ

Fig. 1 shows a three-factor solution space for the example. The
four vertices of the cube cover presented in Eq. (1) are all facets of
the problem and are representative enough to calculate the opti-
mal solution.

Consider an experiment containing two factors, x1 and x2,
assuming each factor has two levels. The two levels of x1 are 2.4
and 3.6, the two levels of x2 are 60 and 80 and the experimental
output data y is obtained from the experiment. A sample of the
experimental data is shown in Table 1.

Let Eq. (2) be defined as a transformation of the variable for any
factor with two levels, where x is the original variable, xU is the
high level and xL is low level. Then xN will be a new variable with
values +1 or �1, that is:

xN ¼
x� ðxUþxLÞ

2
ðxU�xLÞ

2

: ð2Þ

For convenience of description, a transformation of variable is
made for x1 and x2 by:

A ¼
x1 � 3:6þ2:4

2
3:6�2:4

2

¼ x1 � 3:0
0:6

ð3Þ

B ¼
x2 � 80þ60

2
80�60

2

¼ x2 � 70
5

ð4Þ

A and B are used for Table 1, with another A � B added as shown in
Table 2, where �1 is called ‘‘Level 1”, and ‘‘+1” is Level 2. The re-
sponse value Rf,l is calculated from Eq. (5), and the effect of each fac-
tor Ef is calculated through Eq. (6). We have:

Rf ;l ¼Mean of yi for factor f at Level l ð5Þ

where f = A, B, and l ¼ 1;2, and the effect:

Ef ¼
Rf ;Level 2 � Rf ;Level 1

2
ð6Þ

The related data are listed in Table 3.
With the above arrangement, the relationship [22] between

function value yi and other factors A, B, A � B, Rf,l and Ef is can be
described by:

yi ¼ Averageþ EffectA � Aþ EffectB � Bþ EffectA�B � A� B ð7Þ

A numerical example of Experiment 1 can be seen by:

y1 ¼ 5:4 ¼ 6þ 0:7� ð�1Þ � 0:2� ð�1Þ � 0:1� ð�1Þ � ð�1Þ ð8Þ

Other experimental outputs can be obtained from Eq. (7) simi-
larly. It shows that the function of an Orthogonal Array can use a

Fig. 1. Illustration of the orthogonal array L4(23).

Table 1
Tow factors x1, x2 experiments.

Experiment no. Factors Function value yi

x1 x2

1 2.4 60 5.4
2 2.4 80 5.2
3 3.6 60 7.0
4 3.6 80 6.4

Table 2
Tow factors A, B experiments.

Experiment no. Factors Function value yi

A B A � B

1 �1 �1 1 5.4
2 �1 1 �1 5.2
3 1 �1 �1 7.0
4 1 1 1 6.4
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