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a  b  s  t  r  a  c  t

Logistic  regression  models  integrating  disease  presence/absence  data  are  widely  used to
identify  risk  factors  for a given  disease.  However,  when  data  arise  from  imperfect  surveil-
lance  systems,  the interpretation  of  results  is  confusing  since  explanatory  variables  can
be related  either  to  the  occurrence  of  the  disease  or to the  efficiency  of  the  surveillance
system.  As  an  alternative,  we present  spatial  and  non-spatial  zero-inflated  Poisson  (ZIP)
regressions  for modelling  the  number  of highly  pathogenic  avian  influenza  (HPAI)  H5N1
outbreaks  that  were  reported  at subdistrict  level  in Thailand  during  the  second  epidemic
wave  (July  3rd  2004  to May  5th  2005).  The  spatial  ZIP  model  fitted  the  data  more  effec-
tively  than  its non-spatial  version.  This  model  clarified  the  role  of the  different  variables:
for  example,  results  suggested  that human  population  density  was not  associated  with
the disease  occurrence  but  was  rather  associated  with the  number  of reported  outbreaks
given disease  occurrence.  In addition,  these  models  allowed  estimating  that  902  (95%  CI
881–922)  subdistricts  suffered  at  least  one  HPAI  H5N1  outbreak  in Thailand  although  only
779 were  reported  to veterinary  authorities,  leading  to a general  surveillance  sensitivity
of  86.4%  (95%  CI  84.5–88.4).  Finally,  the  outputs  of  the  spatial  ZIP  model  revealed  the  spa-
tial  distribution  of  the  probability  that  a subdistrict  could  have  been  a false  negative.  The
methodology  presented  here  can  easily  be adapted  to other  animal  health  contexts.
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1. Introduction

The first outbreaks of highly pathogenic avian influenza
(HPAI) H5N1 were reported in Thailand in January 2004.
For around two years, a large epidemic occurred through-
out the country. Most outbreaks were located in the Central
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Plain, causing massive mortality in chickens and ducks
(Tiensin et al., 2005). The economic consequences of these
outbreaks were dramatic, as more than 65 million birds
were culled and over US$ 130 million was spent com-
pensating farmers’ losses during 2004 and 2005 (Tiensin
et al., 2007). However, the number of outbreaks signifi-
cantly decreased late in the first half of 2005, and since
then, HPAI H5N1 has only caused sporadic outbreaks in the
country.

It is essential to study the risk factors of highly
pathogenic avian influenza (HPAI) H5N1 in order to design
suitable surveillance and control strategies. These risk
factors have been extensively studied over the past few
years, mainly in Southeast Asia but also in Africa and
Europe (Gilbert and Pfeiffer, 2012). Most of these studies
have defined their epidemiologic unit as an adminis-
trative unit, such as the subdistrict in Thailand (Gilbert
et al., 2006; Tiensin et al., 2009; Paul et al., 2010) or
the commune in Vietnam (Pfeiffer et al., 2007; Henning
et al., 2009; Minh et al., 2009) and have modelled the
disease’s presence/absence through logistic regression
models. However, Gilbert and Pfeiffer (2012) pointed out
that variables significantly associated with the presence
of HPAI H5N1 in logistic regressions could appear signif-
icant simply because they have a positive influence on the
sensitivity of detection rather than on the processes driv-
ing disease presence/absence. It therefore appears essential
to account for imperfect case detection when identifying
disease risk factors.

The alternative methodology used in this paper fol-
lows the general approach introduced in site occupancy
studies in ecology (MacKenzie et al., 2002, 2006). Site occu-
pancy models estimate the proportion of sites occupied by
a species, although the probability of detecting the species
at each detection occasion on each site is less than one.
In disease surveillance where there are no formal detec-
tion occasions, data can no longer be viewed as a series
of detections/non-detections, and should instead be con-
sidered in terms of the number of detections on each site.
Zero-inflated models are commonly used in such applica-
tions (Martin et al., 2005; Royle et al., 2005).

Zero-inflated regressions were introduced by Lambert
(1992) and subsequently applied in various contexts such
as social science (Heibron, 1994), spatial analysis (Agarwal
et al., 2002), ecology (Martin et al., 2005; Flores et al.,
2009), public health (Böhning et al., 1997; Musal and
Aktekin, 2013), and veterinary epidemiology (Lockhart,
2008; Benschop et al., 2010; Bronner et al., 2013). Zero
inflation occurs when count data display an excessive
frequency of zeros, inconsistent with usual count distri-
butions such as Poisson or negative binomial distributions
(Cameron and Trivedi, 1998). In ecology, empirical investi-
gations of site occupancy patterns of a focal species often
reveal excess zeros in distributions of counts of detection
of the focal species over study sites. One explanation of this
phenomenon is that sites where the species is present but
never detected generate additional “false zeros” (Martin
et al., 2005).

In Thailand, the distribution of the number of HPAI
H5N1 outbreaks reported in each subdistrict during
the second epidemic wave is likely to be structurally

zero-inflated. A subdistrict where no outbreaks were
detected could indeed be a subdistrict where no outbreaks
occurred (true zero), but it could also be a subdistrict where
at least one outbreak occurred but none were reported
(false zero). Therefore, in order to correctly model HPAI
H5N1 surveillance count data from Thailand at subdistrict
level, we used the zero-inflated approach suggested by
Lockhart (2008, chapter 5). Note that zero-inflated mod-
els allow for the presence of false negatives (sensitivity
of the surveillance < 1), but assume the absence of false
positives (specificity of the surveillance = 1). In the online
supplementary material 1, we present the results of a
simulation study demonstrating the limitations of logistic
models to identify risk factors of disease presence when
case detection is imperfect. These simulations also illus-
trate the potential of zero inflated models for drawing
inference on risk factors associated with the occurrence of
a disease when count data blurred by imperfect detection
are available.

In this paper, we used a spatial version of the zero-
inflated Poisson model to model the number of HPAI H5N1
outbreaks reported at subdistrict level in Thailand during
the second epidemic wave from July 3rd 2004 to May  5th
2005. The objectives of our study were (i) to simultaneously
identify the factors associated with disease presence and
those associated with the number of reported outbreaks
given disease presence, (ii) to estimate the overall sen-
sitivity of HPAI H5N1 surveillance at subdistrict level in
Thailand, (iii) to describe the spatial distributions at sub-
district level of the risk of HPAI H5N1 presence and of
detection sensitivity, and (iv) to describe the spatial distri-
bution of the probability that a subdistrict was a false zero
during the second HPAI H5N1 epidemic wave in Thailand.

2. Materials and methods

2.1. Spatial zero-inflated model

Because zero-inflated regression models are used in epi-
demiological studies for modelling multiple detections of
infected units with the objective of estimating the number
of undetected infected units, they can be viewed as a type
of capture–recapture approach (Bronner et al., 2013). More
specifically, since the data are derived from only one detec-
tion source, they fall into the unilist capture–recapture
category, just like zero-truncated regression models (Del
Rio Vilas and Bohning, 2008; Vergne et al., 2012; Bronner
et al., 2013).

In a zero-inflated Poisson model (ZIP), the distribu-
tion of observed count Y follows a mixture of a zero-point
mass distribution and a Poisson distribution (Cameron and
Trivedi, 1998): the model assigns a mass  ̊ to the Poisson
distribution and a mass (1 − ˚)  to the extra zeros. The ZIP
(˚, �) probability function can be expressed thus:
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where � is the parameter of the Poisson distribution,
logit(˚i) = ˛0 +
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