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a  b  s  t  r  a  c  t

The  ability  to make  strong  causal  inferences,  based  on data  derived  from  outside  of the
laboratory,  is  largely  restricted  to data  arising  from  well-designed  randomized  control  trials.
Nonetheless,  a number  of  methods  have  been  developed  to  improve  our  ability  to  make
valid  causal  inferences  from  data  arising  from  observational  studies.

In this  paper,  I  review  concepts  of  causation  as  a  background  to counterfactual  causal
ideas;  the  latter  ideas  are central  to much  of  current  causal  theory.  Confounding  greatly
constrains  causal  inferences  in  all observational  studies.  Confounding  is  a biased  measure
of effect  that results  when  one  or more  variables,  that  are  both  antecedent  to  the  expo-
sure  and  associated  with  the  outcome,  are  differentially  distributed  between  the exposed
and  non-exposed  groups.  Historically,  the  most  common  approach  to control  confounding
has been  multivariable  modeling;  however,  the limitations  of  this  approach  are  discussed.
My  suggestions  for  improving  causal  inferences  include  asking  better  questions  (relates
to counterfactual  ideas  and  “thought”  trials);  improving  study  design  through  the use
of forward  projection;  and using  propensity  scores  to  identify  potential  confounders  and
enhance exchangeability,  prior  to seeing  the  outcome  data. If time-dependent  confounders
are present  (as  they  are  in  many  longitudinal  studies),  more-advanced  methods  such  as
marginal  structural  models  need  to be  implemented.  Tutorials  and  examples  are  cited
where possible.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Humans have made causal inferences based on their
observations for thousands of years. As one example, over
2000 years ago, a philosopher, Lucretius Caras, showed
incredible perception into how nature works and he
recorded his insights in a poem entitled “On the Nature of
Things”. Based on his observations, Caras thought that the
basic building blocks of everything, living or dead, were
eternal invisible particles that were infinite in number,
but limited in size and shape. He posited that everything
was formed of these “seeds” and on death or dissolution,
everything returns to them (Greenblatt, 2011). As a sec-
ond example, all epidemiologists know of the work of John
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Snow and colleagues in the 1800s (Bingham et al., 2004;
Koch, 2008), and how with astute observations, and what
today we might call a cohort study—with exposure based
on level of salt in the home water supply—they concluded
that cholera was caused by invisible (at the time) micro-
organisms that entered the water supply via human fecal
material contamination. Today, “The goal of most, if not all,
scientific investigation is to uncover causal relationships.”
(Aiello and Larson, 2002). As De Vreese (2009) states “the
goal of epidemiologic research is, ultimately, disease pre-
vention” which requires the identification of causal factors.
And, according to Constantine (2012) to help achieve this
goal requires a “deep understanding of the research topic,
respect for the assumptions and limitations of the analyti-
cal tools employed, and perhaps most importantly, a strong
theoretical foundation.”

Despite the good intentions of most epidemiologists,
there has been concern about the large number of
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apparently false rejections of the null hypothesis in obser-
vational studies (de Jonge et al., 2011). In the mid-1990s,
Taubes (1995) opined that epidemiology had reached (or
had passed) its limits as a science. And, in 2001, editors
of the International Journal of Epidemiology wondered if it
was time to “call it a day?” (Davey Smith and Ebrahim,
2001). Thus, in 2012, it is comforting to see that over
the past decade epidemiology has flourished as a sci-
ence. Furthermore, credible epidemiologists are holding
to the view that observational studies, “warts and all”,
are our best scientific approach for improving the health
of humans (Hernan, 2011). Nonetheless, we must recog-
nize that making valid causal inferences from observational
data is a challenging, “risky” process (Hernan and Robins,
2006a). Indeed, Rothman and Greenland (2005) reminded
us “. . . all of the fruits of scientific work, in epidemiology
or other disciplines, are at best only tentative formula-
tions of a description of nature . . . the tentativeness of our
knowledge does not prevent practical applications, but it
should keep us sceptical and critical.” Hence, because most
epidemiologists will continue to rely on data from obser-
vational studies, to identify causal associations between
exposures and outcomes, new approaches to support our
making valid causal inferences are needed.

Recently, philosophical discussions of causal inferences
have included approaches to identifying and understand-
ing causal factors in complex systems (Campaner, 2011;
De Vreese, 2009; Rickles, 2009; Ward, 2009a). More com-
plete reviews on the philosophy of causal inference are
available also (Aiello and Larson, 2002; Weed, 2002; White,
2001; Robins, 2001). A number of important papers on the
quantitative aspects of causal modeling are published in
two special issues of the International Journal of Biostatistics
(Moodie and Stephens, 2010a,b; Moodie et al., 2012).

My objectives here are to review the literature on mak-
ing causal inferences from non-experimental data and to
make recommendations on how we might improve our
ability to make valid causal inferences from observational
study-derived data.

2. Defining a cause

Rothman (1976) reviewed the concepts of “cause” from
an epidemiological perspective. For practical purposes, like
Susser (1991), I define a cause of disease as any factor that
produces a change in the nature or frequency of the health
outcome. Often, epidemiologists have separated biological
causes (those operating within individuals) from popula-
tion causes (those operating at or beyond the level of the
individual). For example, infection with a specific microor-
ganism often is viewed as a biological cause of disease
within individuals. In contrast, lifestyle, nutrition, or other
factors that act at the group level or beyond (e.g. weather)
and affect whether or not individuals are exposed to the
microorganism (or alternatively, affect the individual’s sus-
ceptibility to the effects of exposure), would be deemed
population causes. Epidemiologists recognize that whereas
disease occurs in individuals, “epidemiology deals with
groups of individuals because the methods for determin-
ing causality require it” (De Vreese, 2009). Further, it is
vital that we include social as well as biological factors

in our study of health and disease, especially in humans
(Kaplan, 2004; Harper and Strumpf, 2012). Because most
causes act in concert with other causes, we  recognize that a
single cause need not invariably produce the outcome, and
a cause need not be directly causal of the outcome. Given
this complexity, our challenge is how to develop a stan-
dardized approach to identify when an exposure should be
deemed to be a cause of the effect (more on this later) and
to estimate the magnitude of its’ effect.

In searching for causes, although we stress a holistic
approach to health and disease we cannot consider every
potential causal factor in a single study. Rather, we  need to
place limits on the portion of the “real world” we study and,
within this, we constrain the list of factors we identify for
investigation. Being pragmatists, we seek to identify causal
factors that we can manipulate to prevent disease, while
recognizing that some non-manipulatable causal factors
(e.g. age, sex, race) might be crucial to our understanding of
disease patterns in populations. Usually, extant knowledge
and current beliefs form the basis for selecting potential
causal factors for study. Thus, I will begin my  discussion
with a brief review of some concepts of how causal fac-
tors might act, and interact, to alter the health status of
individuals.

3. Conceptual mechanistic models of causation

The biological details of causation often are unknown,
and the statistical measures of association epidemiol-
ogists use reflect—but do not explain—the number of
ways in which the exposure might cause disease (Hernan,
2004; Hernan and Robins, 2006a). Nevertheless, mecha-
nistic models of causation have been helpful in guiding
our research efforts. Because our inferences about cau-
sation typically are based on the observed differences
in outcome frequency, or severity, between exposed and
unexposed subjects (Campaner, 2011), we  will examine the
relationship between a postulated causal model and the
resultant, observed, outcome frequencies. We begin with
a description of a simple mechanistic model known as the
component-cause model.

3.1. Component-cause model

The component-cause model is based on the concepts
of sufficient causes (Rothman, 1976). In this model, a suf-
ficient cause always produces the disease (i.e. if the factor
is present, the disease invariably follows). Both experience
and formal research have indicated that very few exposures
(potential causal factors) are sufficient in and of them-
selves; rather, different groupings of factors combine and
become a sufficient cause. In this context, a component
cause is one of a number of factors that, in combination,
constitute a sufficient cause. Within each sufficient cause,
the factors might be present concomitantly—or they might
follow one another in a temporal chain of events (Rothman
and Greenland, 2005).

In Table 1, I portray some potential causal relationships
between four risk factors (potential causes) and childhood
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