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a  b  s  t  r  a  c  t

This paper  discusses  statistical  modelling  for data  with  a  hierarchical  structure,  and  distin-
guishes  in  this  context  between  three  different  meanings  of  the  term  hierarchical  model:
to account  for  clustering,  to investigate  variability  and  separate  predictive  equations  at
different  hierarchical  levels  (multi-level  analysis),  and  in  a Bayesian  framework  to involve
multiple  layers  of data  or prior  information.  Within  each  of  these  areas,  the  paper  reviews
both past  developments  and  the present  state,  and  offers  indications  of  future  directions.  In
a  worked  example,  previously  reported  data  on  piglet  lameness  are  reanalyzed  with  multi-
level  methodology  for  survival  analysis,  leading  to new  insights  into  the  data  structure  and
predictor effects.  In  our view,  hierarchical  models  of  all  three  types  discussed  have  much
to offer  for  data  analysis  in  veterinary  epidemiology  and other  disciplines.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In everyday language, a hierarchy may  be understood as
“a system in which people are put at various levels or ranks
according to their importance” (Cambridge International
Dictionary of English, 1995). In this definition we may
replace “people” by other—concrete or abstract—items, and
“importance” can also be understood broadly as relating to
a certain order in which we view the items, e.g. in taxon-
omy. Given such a broad definition and usage of the term
hierarchy, it is hardly surprising that the term “hierarchical
(statistical) model” is used in a variety of different con-
texts and meanings. Our main focus here is on hierarchical
data structures in which the “subjects” (experimental or
measurement units) are organized in groups that can be
described by, or depicted in, a hierarchy. The organization
into groups may  follow from the physical location of the
subjects or from the circumstances of the recording of data.
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Typical examples from veterinary studies involve records
on animals housed in farms or treated at veterinary clinics
or hospitals. Data hierarchies can comprise multiple levels,
e.g. by considering sub-units within farms such as pens,
or by considering further grouping of farms into regions.
Longitudinal data may  be seen as a special case of a hier-
archical data structure, with repeated measures taken on
subjects, where special consideration is needed for poten-
tial autocorrelation within subjects over time. In the usual
nomenclature, the lowest hierarchical level corresponds to
the unit of the observations (or measurements); for exam-
ple, level 1 may  correspond to animals and level 2 to farms.
As already indicated, a complex data structure can also be
comprised of several unrelated hierarchies pertaining to
different characteristics of the subjects; a typical example
is that in addition to the location of animals their origin
forms another relevant hierarchy. We  refer to Dohoo et al.
(2009, Chapter 20) for further examples and illustrations
of hierarchical and related data structures.

Traditionally the importance of hierarchical data struc-
tures has been linked to the violation of independence
assumptions involved in classical statistical models, such
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as linear (regression) models. It is intuitively obvious that
subjects linked by their presence at the same hierarchical
level, e.g. animals in the same farm, may  no longer give
rise to observations that can be assumed independent. The
phrase “animals in the same farm are more similar than
animals in different farms” will have made its way  through
innumerable classrooms. The term clustering is also com-
monly used to express the notion that similarity between
observations sharing certain hierarchical levels leads to
clusters in the data. This should not be confused with clus-
ter analysis, which aims at identifying clusters in the data
without referring to known structures. Notwithstanding
the validity of the assertion (the violation of assumptions),
and the need to adjust the modelling approach to account
for it, this particular consequence of a hierarchical data
structure has to some extent overshadowed the new poten-
tials offered by complex data structures. Modelling and
exploring dependence (or correlation) structure may  be
perceived as more complicated than building predictive
equations from a set of predictor variables. It does however
offer different kinds of insights into the factors affecting
the variability of outcomes of interest across a population.
Multi-level modelling utilizes the decomposition of vari-
ability across the hierarchical levels to study the impact of
predictor variables through separate modelling equations
at each level of the hierarchy.

Even after restricting the coverage of hierarchical mod-
els to involve modelling derived from particular data
structures, we  will for the present discussion further dis-
tinguish between 3 major domains or scopes of modelling.

(i) Models to account for hierarchical data structure, or
clustering (Section 2).

(ii) Simultaneous modelling at multiple hierarchical lev-
els, or multi-level analysis (Section 3).

(iii) Bayesian hierarchical modelling, with multiple layers
of equations and assumptions (Section 4).

The objective of the paper is to provide insight into the
current state of statistical theory and applications for each
of these domains of hierarchical models, with particular
focus on their application to veterinary epidemiology. For
this purpose we briefly outline historical developments and
explain the fundamentals of the modelling, without repro-
ducing any of the detailed expositions from the current
literature. Instead, we indicate some recent and ongoing
developments by examples from our practice. This paper
is based on a presentation given at the 2012 Calvin W.
Schwabe Symposium honouring the lifetime achievement
in veterinary epidemiology and preventive medicine of Dr.
Ian R. Dohoo.

2. Hierarchical models I: to account for clustering

The most commonly used and most versatile method
to account for dependence derived from hierarchical data
structures consists in including random effects in the sta-
tistical model. As a general rule each hierarchical level
above the lowest (observation) level should be represented
by a set of random effects. Random effects are latent
(unobserved) variables with assumed distributions, most

commonly Gaussian (normal) distributions, that reflect the
variability in the population the random effects repre-
sent (e.g. a population of farms). As the random effects
are shared by all observations within the same unit of a
hierarchical level (e.g., all animals in a given farm), they
induce a dependence between such observations. Accord-
ingly, statistical inference based on a random-effects model
accounts for clustering in the data.

Random effects in linear models date back at least to
work in the 1940s on genetics and animal breeding. A sub-
stantial body of statistical theory was developed in the
1950s and 1960s to estimate variance components (the
variances of the different random effects), as described in a
subsequent review (Robinson, 1991). The assumed Gauss-
ian distributions in linear models with random effects
made the calculations manageable with limited comput-
ing power, while random-effects models for non-normal
data started to appear in theory and applications in the
1980s. This development made use of the formulation of
a generalized linear model (GLM) framework, on which
the alternative generalized estimating equations (GEE)
methodology was  also based. Software implementations
gradually became available in the 1990s, starting with
models involving two  hierarchical levels. A seminal paper
introducing the new methods for dealing with clustered
data to veterinary epidemiology was McDermott et al.
(1994), later followed by Dohoo et al. (2001).

The inclusion of random effects in GLMs as well as GEE
estimation are by now mainstream approaches, used rou-
tinely in veterinary epidemiology. The applied researcher
can choose from a multitude of textbooks and implemen-
tations in statistical software, although some differences
still exist in estimation methods and flexibility. Further
developments in recent years have been confined to “dif-
ficult situations” (e.g. due to large data sets with many
hierarchical levels or to non-standard data structures)
and to models beyond the standard GLM framework. We
specifically discuss challenges and developments in two
commonly encountered areas: time-to-event (also known
as “survival”) outcomes, and “composite” outcomes that
may  be viewed as consisting of two (or more) distinct
components. Evidently the question of adjusting for hierar-
chical structure may  be asked (and also has been addressed
in the literature) for a wide range of analytical settings,
from diagnostic-test evaluation and agreement to multi-
variate analysis.

2.1. Models for composite outcomes

Here we are concerned not with a truly multivariate out-
come but with univariate distributions formed by adjoining
outcomes of different types. The most common example
we have in mind is a quantitative outcome, either a count
or a measurement, that can also take values at zero, at a
lower detection threshold or at an upper detection thresh-
old. Count distributions such as the Poisson or negative
binomial include zero as a legitimate value, but trouble
arises if the zeros occur more frequently in the data than
predicted from these distributions, a phenomenon broadly
referred to as zero-inflation. For continuous outcomes,
the presence of measurements equal to a lower detection
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