

Available online at www.sciencedirect.com

Applied Energy 84 (2007) 579-598

www.elsevier.com/locate/apenergy

Renewable-energy clusters for remote communities C.P. Underwood ^{a,*}, J. Ramachandran ^b, R.D. Giddings ^a,

Z. Alwan ^a
^a School of the Built Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, United Kingdom
^b Faculty of Engineering and Computing, Conventry University, Conventry CV1 5FB, United Kingdom

Accepted 18 January 2007

Abstract

Remote rural communities are especially vulnerable to the reliability of conventional electricity supply methods and many of these communities are post-industrial and therefore suffer from fuel poverty. In this study, the potential contribution to electricity supply to a remote community based on emerging technologies for embedded solar and wind renewable energy, is investigated using simulation modelling. The technologies focus on photovoltaic "slate" roof coverings and micro-vertical-axis wind-turbines. A new model for photovoltaic energy-supply is developed and combined with an existing method for modelling wind-turbine energy. These supply-side models are matched to an existing model of domestic electricity-demand for a whole village community. Results show that in excess of 40% of annual electricity-demand can be relied upon from these sources, provided that a mechanism for surplus power export is available. In the absence of surplus power management, however, only 8% of the annual electricity demand could be met by these sources. © 2007 Published by Elsevier Ltd.

Keywords: Remote communities; Renewable energy; Microgrids; Photovoltaics; Micro-wind turbines; Domestic electricity demand

1. Introduction

This study focuses on the special case of future electricity generation and utilisation in remote communities in the United Kingdom. Significant regions of Britain contain

^{*} Corresponding author.

E-mail addresses: chris.underwood@northumbria.ac.uk (C.P. Underwood), jayaraman.ramachandran@northumbria.ac.uk (J. Ramachandran), bob.giddings@northumbria.ac.uk (R.D. Giddings), zaid.alwan@northumbria.ac.uk (Z. Alwan).

Nomenclature

- $I, I_{0,0}$ Current (A); diode saturation current density (Am⁻²)
- q Standard electron charge (= 1.602×10^{-19} C); heat transfer rate (W)
- V Voltage
- *R* Resistance (ohm)
- A Diode ideality factor (dimensionless); area (m^2)
- k Boltzmann's constant (= $1.381 \times 10^{-23} \text{ JK}^{-1}$)
- T Temperature (K)
- K Constant ($Am^{-2}W^{-1}$)
- K' Constant (m²W⁻¹)
- G Constant (Km²)
- S Total in-plane solar radiation (Wm^{-2})
- *F* Photovoltaic fill factor (dimensionless)
- N Total (number of)
- C Thermal capacity (JK^{-1})
- t Time (s)
- L Length (m)
- *u* Velocity (wind speed ms⁻¹)
- P Power (W)
- ΣA Total floor area (m²)
- *E* Electrical demand (W)
- LEL Low energy lamp usage factor (dimensionless)
- *DF* Electrical demand factor (dimensionless)

Greek Symbol

- τ Transmissivity (dimensionless)
- α Absorptivity (dimensionless)
- β Angle of surface tilt
- ε Emissivity (dimensionless)
- η Power matching effectiveness (dimensionless)
- ϕ Power utilisation (dimensionless)
- σ Stefan-Boltzmann's constant (=5.67 × 10⁻⁸ Wm⁻²K⁻⁴)

Subscript

- L Light (current)
- 0 Saturated state
- s Series
- sh Shunt
- oc Open circuit
- sc Short circuit
- m Module
- r,sky Radiation to sky vault
- r,sur Radiation to surroundings
- c Convection
- ao Ambient air

Download English Version:

https://daneshyari.com/en/article/245416

Download Persian Version:

https://daneshyari.com/article/245416

Daneshyari.com