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1. Introduction

Computational solution of the fully coupled Navier–Stokes
equations is still really challenging problem, especially when
defined in terms of random coefficients. We prefer the
generalized stochastic perturbation technique as it allows for
a determination of third and fourth central moments as well
as such coefficients like skewness and/or kurtosis. Instead of a
time consuming implementation of the Direct Differentiation
Method (DDM), the Response Function Method (RFM) is

preferred, so that instead of up to the nth order coupled
Navier–Stokes equations we solve for some polynomial approx-
imations of the state functions relating the PVT solution with the
input random variable(s). This approximation is proposed here
in a local sense – the response functions for velocities, pressures
and temperatures may be different in each discrete point of the
computational domain. This idea is connected here with the
classical deterministic formulation of the Finite Volume Method
(FVM) [2–4]. A very useful property of the FVM is that the
conservation principles, which are the basis for the mathemati-
cal modeling of continuum mechanical problems are also
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The main aim of this article is numerical solution to the Navier–Stokes equations for incom-

pressible, non-turbulent and subsonic fluid flows with Gaussian physical random parameters.

It is done with the use of the specially adopted Finite Volume Method extended towards

probabilistic analysis by the generalized stochastic perturbation technique. The key feature of

this approach is the weighted version of the Least Squares Method implemented symbolically

in the system MAPLE to recover nodal polynomial response functions of the velocities,

pressures and temperatures versus chosen input random variable(s). Such an implementation

of the Stochastic Finite Volume Method is applied to model 3D flow problem in the statistically

homogeneous fluid with uncertainty in its viscosity and, separately, coefficient of the heat

conduction. Probabilistic central moments of up to the fourth order and the additional

characteristics are determined and visualized for the cavity lid driven flow owing to the

specially adopted graphical environment FEPlot. Further numerical extension of this tech-

nique is seen in an application of the Taylor–Newton–Gauss approximation technique, where

polynomial approximation may be replaced with the exponential or hyperbolic ones.
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fulfilled forthediscrete equations [8]. A startingpoint forthe FVM
is a decomposition of the problem domain into both regular
and irregular sub-volumes, where each such a sub-volume is
represented by its midpoint only. This is the main difference to
the Finite Element Method (FEM) [5,8], where the equilibrium
equations are formed and solved in the nodal points of the mesh
only, which are located in the corners (and midpoints for higher
order approximations) of each finite element.

Computational analysis is provided in a hybrid way here –

the FVM freeware code OpenFVM is engaged to solve all N–S
problems necessary to build up the response functions. The
internal symbolic Least Squares Method of the system MAPLE
accompanied with the perturbation-based formulas imple-
mented in this program leads to the final statistical moments
of the fluid state. We recommend the weighted version of the
LSM, where each discretization point to define variability of the
input random quantity has some associated weight showing
its contribution to the final expected value. Numerical
visualization is carried out in the freeware FEPlot used before
for the FEM and FDM output files and procedures. Computa-
tional illustration deals with incompressible fluid flow in a
cubic domain and this flow occurs with two Gaussian input
random variables – heat conductivity coefficient and, sepa-
rately, fluid viscosity. We compute twice up to fourth order
probabilistic characteristics of the PVT solution to validate an
importance of both physical parameters. Although these input
parameters are state-independent, further extension of the
proposed SFVM toward numerical modeling of nonlinear, i.e.
temperature-dependent systems will be also possible.

2. Governing equations

2.1. Navier–Stokes equations

The system of basic equilibrium equations to be extended
toward stochastic analysis and to be solved numerically can be
written with boundary conditions as follows [2,6,7]:

Notation

Roman symbols

c specific heat
dj direction vector
f~i body forces per unit volume
g gravitational acceleration
k thermal conductivity
ns number of the finite volume outer faces
p fluid pressure
pb(x) probability density function
qi the heat flux
t time parameter
vi velocity vector
Aj an area the face j of the given finite volume
E[b] expected value of random variable b
DP

bm matrix of unknown polynomial coefficients for
pressure response

DT
bm matrix of unknown polynomial coefficients for

temperature response
DU

bm matrix of unknown polynomial coefficients for
velocity response

KPðaÞ
l ; K

PðaÞ
l j system matrices for the pressures correspond-

ing to the lth finite volume center and the center
of its jth outer face, ath RFM test

KTðaÞ
l ; K

TðaÞ
l j system matrices for the temperatures corre-

sponding to the lth finite volume center and the
center of its jth outer face, ath RFM test

KUðaÞ
l ; K

UðaÞ
l j system matrices for the velocities corre-

sponding to the lth finite volume center
and the center of its jth outer face, ath RFM
test

M total number of deterministic experiments nec-
essary for the response function recovery

N total number of degrees of freedom in the sys-
tem

P vector of discrete pressures
PðaÞl ðtÞ pressure in the center of finite volume l at time t,

ath RFM test
P
ðaÞ
l j ðtÞ pressure face flux (finite volume l, its j outer

plane, at time t, ath RFM test)
QPðaÞ

l ; QUðaÞ
l ; QTðaÞ

l the R.H.S. vectors for the pressures,
velocities and temperatures at the lth finite
volume and ath RFM test

Sj normal vector
T discrete temperatures vector
TðaÞ
l ðtÞ temperature of the center of finite volume l at

time t, ath RFM test
T
ðaÞ
l j ðtÞ temperature face flux (finite volume l, its j outer

plane, at time t, ath RFM test)
U the vector of discrete velocities
UðaÞ

l ðtÞ velocity of the center of finite volume l at time t,
ath RFM test

U
ðaÞ
l j ðtÞ velocity face flux (finite volume l, its j outer

plane, at time t, ath RFM test)
Vl total volume of the lth sub-volume
Var(b) variance of random variable b

Greek symbols

a, b the local index symbol
a(b) the coefficient of variation of random variable b
b(b) skewness coefficient of random variable b
k(b) kurtosis of random variable b
dij Kronecker delta
eij strain tensor
e perturbation parameter
r fluid density
m fluid viscosity
mp(b) pth central moment of the variable b
sij stress tensor
x interpolation coefficient
u temperature
f
ðaÞ
l viscous dissipation for the lth finite volume and

ath RFM numerical test
wb shape functions
(� � �),i partial derivative symbol
Dt time increment
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