
journal homepage: www.elsevier.com/locate/acme

Available online at www.sciencedirect.com

Original Research Article

Iterative methods for solving large-scale problems of
structural mechanics using multi-core computers

S.Yu. Fialko

Department of Physics, Mathematics and Applied Computer Science, Cracow University of Technology,
Kraków 31-155, Poland

a r t i c l e i n f o

Article history:

Received 18 January 2013

Accepted 30 May 2013

Available online 6 June 2013

Keywords:

Finite element method

Preconditioned conjugate gradient

method

Sparse matrices

Multi-core computers

Multistory buildings

a b s t r a c t

The paper studies the conjugate gradient method for solving systems of linear algebraic

equations with symmetric sparse matrices that arise when the finite-element method is

applied to the problems of structural mechanics. The main focus is on designing effective

preconditioning and parallelizing the method for multi-core desktop computers. Precon-

ditioning is based on the incomplete Cholesky “by value” factorization method and

implemented based on the technique of sparse matrices, which allows increasing

convergence considerably without a significant increase of the computer's resources.

Parallelization is implemented for the incomplete factorization as well as for iterative

process stages. The method is integrated into the SCAD software package (http://www.

scadsoft.com). The paper includes a discussion of the results of calculations done with

direct and iterative methods for large-scale design models of tall buildings, originally from

the SCAD Soft1 problem collection.

& 2013 Politechnika Wroc"awska. Published by Elsevier Urban & Partner Sp. z o.o. All rights

reserved.

1. Introduction

Intense development of multistory construction, combined
with the rapid development of computation equipment used
for strength calculations in small and medium-sized engi-
neering bureaus, created a necessity to improve methods for
solving linear algebraic equations (solvers) that arise when
the finite element method is applied to problems of structural
mechanics. Since the dimension of the design model of a
contemporary multistory building is between 800,000 and
5,000,000 equations, a solver for a contemporary FEA software
must be highly efficient.

Modern desktop computers are progressively more cap-
able of solving large-scale and complicated engineering

problems, eliminating the need for clusters, powerful and
expensive workstations, and computer networks. However,
they have a limited amount of RAM and small system bus
bandwidth. This makes it necessary to develop computa-
tional methods that take into consideration the above spe-
cifics of computers with such architecture, because methods
proven to be effective on distributed-memory computers
(clusters or computer networks) are not always effective on
desktop computers with SMP (symmetrical multiprocessing)
architecture. In other words, the solver must be able to use
the disc memory if the dimension of the problem exceeds the
RAM capacity, demonstrate high performance while working
in the RAM, and speed up reliably as the number of cores
(processors) is increased.

1644-9665/$ - see front matter & 2013 Politechnika Wroc"awska. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
http://dx.doi.org/10.1016/j.acme.2013.05.009

E-mail address: sfialko@poczta.onet.pl
1SCAD Soft (http://www.scadsoft.com)—IT company, developer of the SCAD FEA software, one of the most popular software used in

the CIS countries for structural analysis and design, certified according to the regional norms.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 (2 0 1 4) 1 9 0 – 2 0 3

dx.doi.org/10.1016/j.acme.2013.05.009
dx.doi.org/10.1016/j.acme.2013.05.009
dx.doi.org/10.1016/j.acme.2013.05.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acme.2013.05.009&domain=pdf
mailto:sfialko@poczta.onet.pl
dx.doi.org/10.1016/j.acme.2013.05.009

Contemporary FEA software most frequently employs the
sparse direct solvers for analysis of problems of structural
mechanics. The decisive factor here is employing an effective
ordering method that significantly decreases the number of
non-zero entries during matrix factorization [4], as well as the
solver's ability to use the disc memory when solving large-
scale problems on computers with small amounts of RAM,
and to maintain high performance and speed up when
processing data blocks stored in the RAM.

In the latter case, the key issue is extracting rectangular
dense submatrices from a sparse matrix and subjecting them
to high-performance BLAS level 3 routines [2], particularly
matrix multiplication procedures. Furthermore, with the use
of direct methods, solution time does not depend on the
conditioning number associated with the linear equation set
and depends only slightly on the number of right hand parts, if
the number of the latter is relatively small. Direct methods also
allow detecting the geometric instability of the design model.

Until recently, the multifrontal solver [1,7,14], has been the
most widespread direct method. It has all of the above
advantages, however, it also contains an excess number of
memory–memory and memory–disc–memory data transfer.
On multi-core SMP computers, this shortcoming prevents
achieving maximum possible performance and speeding up
with the increase in the number of processors.

In the recent years, the PARDISO method [22] from the
high-performance Intel Math Kernel Library (Intel MKL) [10]
has become widespread, demonstrating high performance
with one processor and good speed up on desktop multi-core
computers. However, the OOC (out of core) mode, which
utilizes disc memory, does not work for large-scale problems
and demonstrates low performance with small ones [13].
Therefore, in practice, this method can only be used for
problems solved in RAM.

The above became a stimulus for developing the PARFES
(parallel finite element solver) method, intended for solving
finite-element problems with multi-core desktop computers
[13]. PARFES demonstrates the performance and speed up
that approximate those of PARDISO, but, unlike the latter,
includes two disc usage modes, OOC and OOC1. In the OOC
mode, the number of I/O operations is minimal, resulting in
only a small decrease in performance and speed up com-
pared to CM (core mode—utilizing RAM only). However, if the
requirements to RAM are still exceeded in the OOC mode,
PARFES switches to the OOC1 mode. In this mode, the
number of I/O operations is increased considerably, and the
decrease in performance and speed up is also considerable—
however, this mode allows solving large-scale problems on
computers with small amounts of RAM [17]. The mode is
selected automatically.

The common disadvantage of direct methods includes the
quadratic dependence of the number of operations on the
dimension of the problems. Plus, for problems with the dimen-
sion exceeding the RAM capacity, the matrix factorization time
and forward-back substitution time are considerably increased.

Iterative methods do not guarantee detecting the geo-
metric instability of the design model; the iterative process is
started anew for each right hand side; and when solving
poorly conditioned problems, iterative methods result in
slower or no convergence.

Design models of tall multistory buildings contain differ-
ent types of finite elements (FE)—thin-walled plate and shell
FE, FE of spatial frame, volumetric FE, specialized FE (elastic
supports, rigid links that carry penalty parameters in SCAD,
compatible nodes, etc.). This also results in a wide dispersion
of stiffness values. In realistic problems, due to complex
geometry, mesh generators cannot always provide for the
optimal ratios between FE sides and angles for shells and
plates. Due to this, design models for multistory buildings
usually result in poorly conditioned stiffness matrices and
therefore require iterative methods that are stable against ill
conditioning [21]. The use of preconditioning is an effective
way for overcoming of poor conditioning [6,8].

The main operations of iterative methods are matrix–
vector multiplication and solving the system of linear alge-
braic equations regarding preconditioning. These operations
are classified as BLAS level 2 routines. Unlike matrix multi-
plication used in direct methods, which employs cache reuse
(data, once placed in the cache, is read into the processor
registers multiple times, from the fast cache rather than the
slow RAM), register blocking, vectorization of computation
with the use of XMM and YMM registers, and other high-
performance techniques, BLAS level 2 routines are carried out
at the speed of the slow memory system rather than the fast
processor [8]. The use of multithreading in the SMP architec-
tures allows for good speed up of the matrix multiplication
routine, since the memory system is not overloaded thanks
to the cache reuse. In BLAS level 2 routines, on the other
hand, the number of memory–cache–memory transfers is of
the same order as the number of arithmetic operations. The
memory system is incapable of efficiently serving several
processors, and each of them is forced to perform many idle
cycles while waiting for the required data to be loaded into
the cache from the RAM. Due to this, the performance and
speed up of matrix–vector multiplication and solving of linear
equation sets regarding preconditioning is far less compared
to matrix multiplication (see Fig. 1).

Here, Sp ¼ T1=Tp is speed up, T1 is solution time with one
processor, Tp is solution time with p processors. The results
were obtained on a computer with Intels Core™2 Quad CPU
Q6600 @2.40 GHz processor, RAM DDR2 333.7 MHz, 8 GB,

Fig. 1 – Speed up (Sp) with the increase in the number of
processors (p). 1—ideal, 2—for dense matrix–vector
multiplication algorithm, 3—for dense matrix multiplication
algorithm.

a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 4 (2 0 1 4) 1 9 0 – 2 0 3 191

Download	English	Version:

https://daneshyari.com/en/article/245617

Download	Persian	Version:

https://daneshyari.com/article/245617

Daneshyari.com

https://daneshyari.com/en/article/245617
https://daneshyari.com/article/245617
https://daneshyari.com/

