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a b s t r a c t

The Newton–Raphson method, which is based on the Taylor series and uses the tangent

stiffness matrix, has been widely used to solve nonlinear problems. In this paper, a

Newton-like algorithm is used for analyses involving geometric nonlinearity. This iterative

technique that requires two initial guesses is known as two-point iterative method. In this

method, a real function is assumed to approximate the tangent stiffness matrix of the

structure. This paper, proposes an efficient function for reducing the computing time and,

number of iterations in the Newton–Raphson method coupled with the two-point

methodology. The computational nonlinear analysis on planar frames shows that the

proposed strategy can reduce the computing time up to around 40%. Compared with the

classic Newton–Raphson algorithm, the presented method proposes a methodology which

also can reduce the number of iterations.

& 2012 Politechnika Wrocławska. Published by Elsevier Urban & Partner Sp. z o.o. All rights

reserved.

1. Introduction

Recently, nonlinear analysis has started to replace linear

analysis for many structural engineering applications,

including in the analysis of 2-D frames. In parallel with the

development of more intricate analysis methods, the speed

and memory capacity of computers continue to increase each

year. Making it possible to do analysis and design techniques

that in the recent past were impossible.

Linear and nonlinear analysis can be conducted with

consideration of small or large deflections. Analysis with

consideration for large deflections expresses that the struc-

tural configuration deforms obviously, which results in a

change of originally assumed displacement and forces direc-

tions. In geometric nonlinear or second-order elastic analysis,

equilibrium equations between internal forces and external

loads are formulated on the deformed configuration of the

structure. In this paper, the large deflection formulation is

used during elastic conditions.

For three decades now, nonlinear elastic and inelastic

analysis of frame structures has been a topic of considerable

research. Kassimali [1] presented a numerical procedure for

the large deformation analysis of elastic–plastic plane frames.

Saffari et al. [2] introduced a algorithm for nonlinear analysis

which can decrease number of iterations and computing time.

Tabatabaei and Saffari [3] studied large strain analysis of

planar frames using a normal flow algorithm. Scott and

Filippou [4] considered response gradient for nonlinear ele-

ments under large displacements. Kassimali and Garcilazo [5]

proposed a procedure for large displacement analysis of

elastic plane frames subjected to temperature changes.

Tabatabaei et al. [6] utilized the Newton–Raphson method

along the flow path normal in pushover analysis of frames.

Of all numerical computation, systems of nonlinear equa-

tions are maybe the most laborious to solve. There are

various techniques for solution of these equations. For a

nonlinear problem, the solution of the nonlinear system of

equations usually takes up most of the computational time.
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Many iterative methods have been proposed for improving

Newton–Raphson method [7,8]. However, many methods

depend on the higher derivatives from the computing proce-

dure that limits their practical application because of intrin-

sically laborious and vast essence of the computation

involved.

In recent years, there have been many developments in

making up iterative algorithms designed to improve usage of

the Newton–Raphson method while at the same time, not

needing the computation of second derivatives (Hessian

matrix) for solving the nonlinear equations (9,10). Iterative

algorithms can be categorized as either depending on the

one-step or the two-step category. Two-step methods have

been proposed by incorporating the Newton–Raphson algo-

rithm with another one-step approach [7]. This method has

adaptation to predictor-corrector methods. Multipoint itera-

tive solvers belong among such strong methods for solving

nonlinear equations which can defeat the theoretical restric-

tions of one-point algorithms regarding the convergence

order and computational efficiency [9]. Saffari and Mansouri

[10] applied two-point method for geometrically nonlinear

analysis of structures, especially in the case of trusses.

However, the method traces the equilibrium path until limit

point. A Newton-like scheme is developed for frames and a

new function is proposed to increase the convergence rate of

analysis. Furthermore, limit points can be passed using the

presented algorithm.

2. Geometrical nonlinear analysis of planar
frame

2.1. Primary information

Fig. 1 illustrates a beam-column element of cross-sectional

area A, length L, Young’s modulus E and second moment of

area I, subjected to member end forces {F1, F2, F3, F4, F5,

F6}T¼ {F} in global coordinates. For the 2D frame element in

its initial form, the global nodal coordinates are (X1, Y1) for

node 1 and (X2, Y2) for node 2. For the plane frame element in

its current formation the global nodal coordinates are (X1þV1,

Y1þV2) for node 1 and (X2þV4, Y2þV5) for node 2.

The current length of the plane frame member is:

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðX2�X1Þ þ ðV4�V1Þg

2
þ fðY2�Y1Þ þ ðV5�V2Þg

2
q

ð1Þ

In Fig. 2 a plane frame member is shown subject to member

forces in local coordinates. These forces entail an extension d,

and end rotations y1 and y2 at the ends 1 and 2, respectively.

The sign conventions for forces and displacements are also

illustrated in the Fig. 2.

The expressions for element internal forces (Q¼Axial force;

M1, M2¼end moments) and system tangent stiffness matrix

can be found in [11]. Obviously, shear forces depend on the

end moments of the member.

The transformation relation between an element’s local

forces, {S}¼ {M1 M2 Q}T, and its global end forces {F} (see Fig. 1)

can be expressed as:

fFg ¼ ½B�fSg ð2Þ

in which the transformation matrix is:

B½ � ¼
1
L0

�n �n mL0

m m nL0

L0 0 0

n n �mL0

�m �m �nL0

0 L0 0

2
666666664

3
777777775

ð3Þ

with

m¼ cosa n¼ sina ð4Þ

L0 and a refer to the length and orientation, respectively, of

the chord of the element in its deformed configuration, as

shown in Fig. 1.

2.2. System equilibrium equations

The equations of equilibrium of the system can be expressed

as follows:

ff ðdÞg ¼ fPg ð5Þ

which {f} is the resultant of the nodal internal forces and {P}

presents external nodal forces. The element force deforma-

tion relationships interpret that {f} is a highly nonlinear

function of {d}. The differential formation of Eq. (5) is:

½t�fDdg ¼ fDPg ð6Þ

here {Dd} and {DP} are increments of displacement and load,

respectively.

Fig. 1 – Member forces and deformations in global

coordinates.

Fig. 2 – Member forces and deformations in local

coordinates.
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