Equine Protozoal Myeloencephalitis

Daniel K. Howe, PhD^{a,*}, Robert J. MacKay, BVSc, PhD^b, Stephen M. Reed, DVM^{a,C}

KEYWORDS

• Sarcocystis • Neospora • Opossum • Protozoa • EPM • Central nervous system

KEY POINTS

- Equine protozoal myeloencephalitis is an infectious neurologic disease of horses in North, Central, and South America. The disease is caused by the coccidian parasite *Sarcocystis neurona* and less frequently by the related pathogen *Neospora hughesi*.
- Horses are infected with *Sarcocystis neurona* by ingesting food or water that has been contaminated with feces from an infected opossum. The mode of transmission remains uncertain for *Neospora hughesi*.
- In many geographic areas of the Americas, infection is common, as evidenced by the proportion of horses exhibiting antibodies against the parasites. However, clinical disease is uncommon (<1% of seropositive horses).
- Anticoccidial drugs will halt infection, but early diagnosis and treatment are critical to minimize immune-mediated damage in the central nervous system.

A video of the horse with EPM, acute ataxia caused by equine protozoal myeloencephalitis accompanies this article.

INTRODUCTION

An unusual neurologic condition of horses termed *segmental myelitis* was first observed by Rooney in Kentucky in 1964.¹ Rooney renamed the syndrome *focal encephalitis-myelitis* because of brain involvement, and Prickett, Rooney and others reported on 44 cases at the annual meeting of American Association of Equine Practitioners in 1968² and on 52 cases in 1970.¹ In 1974, protozoa were first seen in association with characteristic lesions,³ and the disease was given its current name, equine protozoal myeloencephalitis (EPM) by Mayhew and colleagues,⁴ who reported on 45 cases at the American Association of Equine Practitioners meeting in 1976. Over the

E-mail address: daniel.howe@uky.edu

^a Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546-0099, USA; ^b Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 Southwest 16th Avenue, Room VH-136, PO Box 100136, Gainesville, FL 32610-0125, USA; ^c Rood and Riddle Equine Hospital, PO Box 12070, Lexington, KY 40580, USA * Corresponding author.

years, a better understanding of EPM etiology and epidemiology has been obtained. However, EPM pathogenesis remains uncertain.

ETIOLOGIC AGENTS

*Sarcocystis neurona*⁵ and *Neospora hughesi*⁶⁻¹⁰ are the 2 known causative agents of EPM, although most cases are caused by infection with *S neurona*. Both are protozoan parasites in the phylum, Apicomplexa, which is a broad and important group of obligate intracellular pathogens that cause significant disease in humans and animals.

All species of *Sarcocystis* have a 2-host life cycle that alternates between definitive and intermediate hosts. The opossum (*Didelphis virginiana*) is the definitive host for *S neurona* in North America.¹¹ As well, South American opossums can act as definitive hosts for *S neurona*.¹² The parasite undergoes sexual reproduction in the intestinal epithelium of the infected opossum, resulting in the production of sporozoite-containing sporocysts that are passed in the feces and are infectious for the intermediate hosts. Skunks,¹³ raccoons,¹⁴ armadillos,¹⁵ and cats¹⁶ have been identified as intermediate hosts for *S neurona*. In the natural intermediate hosts, *S neurona* forms latent sarcocysts in the muscle tissue, which is the source of infection for the opossum definitive hosts. Opossums are commonly infected with *S neurona*,¹⁷ so there can be significant contamination of the environment in locations in which opossums are frequently observed.

Horses become infected with *S neurona* when they ingest food or water contaminated with feces from an infected opossum. Horses are considered incidental/dead-end hosts that do not contribute to the parasite's life cycle, because *S neurona* sarcocysts are not found routinely in these animals. However, *S neurona* sarcocysts were described in 1 case of a 4-month-old foal with clinical signs of EPM.¹⁸ Although it remains unlikely that horses play a major role in the life cycle of *S neurona*, this finding suggests that the parasite has the capacity to establish long-term latent infection in these animals. It is important to note that *S neurona* cannot be transmitted horizontally between horses nor can it be transmitted to horses from the intermediate hosts.

The complete lifecycle of *N* hughesi is unknown, so the mode(s) of transmission of this parasite to horses remains uncertain. Canids are known to be a definitive host for the related species *Neospora caninum*,¹⁹ but it has not been established that *N* hughesi use dogs as a definitive host. Vertical transmission of *N* caninum is efficient in cattle, and several studies now suggest that transplacental passage of *N* hughesi can occur in horses.^{20,21}

EPIDEMIOLOGY

The first national epidemiologic survey of EPM used postmortem data gathered retrospectively from 10 diagnostic centers throughout the United States and Canada.²² Most horses (61.8%) were 4 years of age or less and, 19.8% were 8 years of age or older. Although Thoroughbreds, Standardbreds, and Quarter Horses were most commonly affected, no breed, gender, or seasonal bias was established. In a smaller retrospective study, 82 horses with histologic lesions compatible with EPM were reviewed.²³ Disease risk was highest among male Standardbred horses compared with the gender and breed distributions of the attendant hospital population. The mean age of affected horses was 3.6 \pm 2.8 years, similar to the findings of Fayer and colleagues.²²

The prevalence of *S neurona*–specific serum antibodies in horses from the United States has varied widely, ranging from as low as 15% to a high of 89%, depending on geographic location.^{24–28} Seroprevalences of 35.6% and 35.5% were reported in horses in Brazil and Argentina, respectively,^{29,30} thus, showing that horses in South America are commonly exposed to the parasite.

Download English Version:

https://daneshyari.com/en/article/2458805

Download Persian Version:

https://daneshyari.com/article/2458805

Daneshyari.com