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This paper presents a new variant of the Harmony Search (HS) algorithm. This Hybrid Harmony Search (HHS)
algorithm follows a new approach to improvisation: while retaining HS algorithm Harmony Memory and pitch
adjustment functions, it replaces the HS algorithm randomization function with Global-best Particle Swarm
Optimization (PSO) search and neighbourhood search. HHS algorithm performance is tested on six discrete
truss structure optimization problems under multiple loading conditions. Optimization results demonstrate
the excellent performance of the HHS algorithm in terms of both optimum solution and the convergence
behaviour in comparison with various alternative optimization methods.
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1. Introduction

Structural optimization has gained much attention because of its di-
rect applicability to the design of structures [16]. Number of design var-
iables, size of search area, and number of design constraints are factors
that influence the time needed by designers to find optimized designs.
Designers and owners desire optimized structures in order to reduce
building structure costs [20]. Optimized structures should minimize
the cost of a structure while meeting code-specified behaviour and per-
formance requirements. Optimization allows to yield better designs at
the lowest cost in terms of time and money.

Most recent studies on optimal structure designs have adopted con-
tinuous variables [7,8,21,23,33]. However, the availability of standard
member sizes and precision limitations inherent in the modern steel
manufacturing sector suggests to select cross-sectional areas from an
available list of discrete values. Discrete optimization problems are far
more difficult to solve than continuous problems [25,35]. Traditionally,
researchers have used mathematical methods that employ rounding
off techniques based on continuous solutions to solve discrete optimiza-
tion problems. However, these methods may become infeasible or
generate increasingly suboptimal solutions with larger numbers of var-
iables [26]. This drawback has led researchers to rely on simulation-

basedmetaheuristic algorithms to solve engineering optimization prob-
lems. Metaheuristic algorithms combine rules and randomness to imi-
tate natural phenomena and try to find the optimum design using
‘trial and error’ in a reasonable amount of computing time [40]. The ca-
pability to balance intensification and diversification during a searchde-
termines the efficiency of a specific metaheuristic algorithm.
Intensification (exploitation) aims to identify the best solution and se-
lect during the process a succession of best candidates/solutions. Diver-
sification (exploration) ensures, usually by randomization, that the
algorithm explores the search space efficiently. To address global search
needs, modern metaheuristic algorithms have evolved to incorporate 3
main purposes: solving problems faster, solving larger problems, and
enhancing algorithm robustness [5,13].Modernmetaheuristic algorithms
include: Genetic Algorithms (GA) [18], Particle Swarm Optimization
(PSO) [22], Differential Evolution (DE) [34], Artificial Bee Colony (ABC)
[19], Bees Algorithm (BA) [29], Firefly Algorithm [39], Cuckoo Search
(CS) [41], and Symbiotic Organisms Search (SOS) [4], among others.

Rather drawing its inspiration from biological or physical processes,
the HS algorithm originally proposed in [14] is inspired by an artistic-
creative process. The HS algorithm conceptualizes the behaviour of
musicians searching for harmony and then continuing to refine their
tune to achieve an increasingly better state of harmony.Musical harmo-
ny is analogous to an optimization solution vector and a musician's im-
provisations are analogous to local and global search schemes in
optimization techniques. Due to its ease of application and simplicity,
the HS algorithm has garnered growing attention and been successfully
employed to awide variety of practical structural optimization problem,
such as truss structures [24], steel sway frames [9], grillage systems [32],
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cellular beams [11], and web-expanded beams [10]. In comparison to
earlier metaheuristic algorithms, the HS algorithm imposes fewer
mathematical requirements and is easily adopted to solve various engi-
neering optimization problems. In addition, this algorithm does not re-
quire initial values for decision variables, thus it may escape the local
optima. The HS algorithm generates a new vector after considering all
existing vectors based on the Harmony Memory Considering Rate
(HMCR) and Pitch Adjusting Rate (PAR) rather than considering only
two (parents) as in the Genetic Algorithm. Furthermore, instead of
using gradient search, the HS algorithm uses stochastic random search
based on HMCR and PAR, which obviates the need for derivative infor-
mation [15]. These features increase HS algorithm flexibility and pro-
duce better solutions. Although several variants of the HS algorithm
have been proposed, their effectiveness in dealing with diverse prob-
lems remains unsatisfactory [38].

While the HS algorithm is good at identifying the high performance
regions of a solution space in a reasonable amount of time, this algo-
rithm performs local searches for numerical applications poorly [28].
To improve the local search ability of the HS algorithm, this paper pro-
poses a new algorithm called the Hybrid Harmony Search (HHS) algo-
rithm. The HHS algorithm integrates the memory consideration and
pitch adjustment process of the HS algorithm with Global-best PSO
and neighbourhood search. Six classical truss design problems with
sizing variables are solved in this study in order to demonstrate the ef-
ficiency of the HHS algorithm. It is shown that the present algorithm is
very competitive with other optimization methods documented in
literature.

The remainder of this paper is organized as follows: Section 2 pre-
sents the formulation of the discrete sizing optimization problem;
Section 3 briefly reviews the HS and IHS algorithm; Section 4 describes
the HHS algorithm in detail; Section 5 describes the test problems and
discusses the optimization results; and Section 6 presents conclusions
and recommendations for future research.

2. Discrete structural optimization problems

Since many problems in engineering have multiple solutions
selecting. Discrete sizing optimization attempts to find the optimal
cross-section of system elements in order to minimize structural
weight. However, theminimumdesignmust also satisfy inequality con-
straints that limit design variable sizes and structural responses [25].

The discrete structural optimization problem for a truss structure
may be formulated as:

Find
A ¼ ½A1;A2;…;Ang�;
Ai ϵ Di;Di ¼ ½di;1;di;2;…di;rðiÞ�

To minimize

W Að Þ ¼
Xnm
i¼1

γi�Ai � Li ð1Þ

Subject to σmin≤σ i ≤σ max i ¼ 1;2; …;n
δmin≤δi≤δmax i ¼ 1;2; …;m

where: A represents the set of design variables; Di is an allowable
set of discrete values for design variable Ai; ng is the number of design
variables or member groups; r(i) is the number of available discrete
values for the ith design variable; W(A) is the weight of the structure;
n is the number of componentmembers in the structure; m is the num-
ber of nodes; γi is the material density of member i; Li is the length of
member i; δi is the nodal displacement/deflection at node i; σi is the
stress developed in the i-th element; and min and max represent the
lower and upper bounds, respectively.

The optimum design of truss structures must satisfy optimization
constraints stated in Eq. (1). This paper uses a constraint handling

procedure developed by Deb [6] to handle the problem-specific con-
straints. This procedure consists of the following three rules:

• Rule 1: Any feasible solution is preferred to any infeasible solution.
• Rule 2: Between two feasible solutions, the one having the better ob-
jective function value is preferred.

• Rule 3: Between two infeasible solutions, the one having the smaller
constraint violation is preferred.

The first and third rules orient the search toward feasible regions.
The second rule orients the search toward the feasible region with
good solutions.

3. Harmony Search algorithm

3.1. Harmony Search algorithm

Harmony Search (HS) algorithm is a metaheuristic algorithm that
imitates the natural music improvisation process that musicians use
to achieve a perfect state of harmony such as that achieved during
jazz improvisation. The HS algorithm holds several important advan-
tages over other competing algorithms and has been applied successful-
ly to a wide variety of optimization problems. Key advantages include
ability to handle both discrete and continuous variables, conceptual
simplicity, ease of implementation, and few parameters requiring
adjustment.

The HS algorithm uses an optimization process to attain a global
solution defined by an objective function similar to the way musicians
attain aesthetic harmony as defined by an aesthetic standard. Each mu-
sician corresponds to one decision variable; the pitch range of musical
instruments corresponds to the value range of the decision variable;
musical harmony at a certain time corresponds to the solution vector
at a certain iteration; and audience aesthetics correspond to the objec-
tive function.

In musical improvisation, each players plays at any pitch within the
possible range, creating one harmony vector. If all pitches are in good
harmony, the experience is stored in the memory of each player and
the possibility of creating good harmony increases in the subsequent
timeframe. In engineering optimization, each decision variable initially
chooses any value within the possible range to create a solution vector.
If all variable values create a good solution, the design is stored in the
memory of each variable and the possibility of creating a good solution
increases in the subsequent timeframe.

When a musician improves the musical harmony, he or she has three
possible options: (1) playing any known tune exactly from memory,
(2) playing a tune similar to a known tune, (3) composing a new tune
at random. These three options correspond to the three main HS
algorithm concepts of:memory consideration, pitch adjustment, and ran-
domization. In general, the HS algorithm procedure consists of 5 steps:

Step 1. Initialize the problem and algorithm initial parameters.

The optimization problem is defined as Minimize f(x) subject to
LBi ≤ Xi ≤ UBi, in which i = 1, 2,.…, N. LBi and UBi are the lower
and upper bounds for the decision variables. This step also specifies
the HS algorithm parameters, including Harmony Memory Size
(HMS), Harmony Memory Consideration Rate (HMCR), Pitch
Adjusting Rate (PAR), bandwidth (bw), and number of improvisa-
tions (NI) or stopping criterion. The NI equals the total number of
function evaluations. A good set of parameters will improve the abil-
ity of the algorithm to search for the global optimum with a high
convergence rate.
Step 2. Initialize the Harmony Memory (HM).

The second step is Harmony Memory initialization. The HS algo-
rithm has memory storage, called Harmony Memory (HM), in which
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