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For a robotic excavator, there is no operator in the cabwhile it is working, so themoving trajectory of the bucket
teeth is planned in advance. For such a multi-joint machine, the coordinate motion control algorithm must be
properly designed to achieve high tracking precision. However, due to uncertainty of the load and fluctuation
of the speed, the multi-actuator system cannot work stably, resulting in tracking errors. To improve tracking
performance, a cross-coupled pre-compensation algorithm is put forward in this paper. It is combined with
nonlinear proportional-integral controllers to optimize the control parameters of the actuators. Experiments
are performedon a 3.5-ton exactor. The results show that the proposed control algorithm is effective for improving
the tracking accuracy.
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1. Introduction

As excavators are often used to accomplish dangerous tasks, a robotic
excavator, which can operate without an operator in the cab, can greatly
improve safety. Kim [1] proposed a set of analytic gradient-based motion
optimization algorithms to plan an optimized trajectory for an unmanned
excavator. Tiwari [2] provided away to classify the bucket trajectory; this
approach could assist in the operation of excavators. For an excavator, the
motion of each actuator is controlled by a separate closed-loop controller,
such as neural adaptive control [3], robust adaptive control [4], and sliding
mode control [5]. However, single actuator control cannot guarantee
accuracy for an unmanned excavator. As a result, additional coordinated
control of the multi-actuators must be conducted. Due to the inherent
nonlinearity of the hydraulic system, the load uncertainty, and the struc-
tural differences, the four-axis system is not able to provide stable opera-
tion, resulting in errors. There are two types of errors: tracking error,
which is the distance from the actual position to the expected position,
and contour error, which is the smallest deviation from the expected con-
tour to the actual position. There are few reports regardingmulti-actuator
coordinated control in hydraulic excavators. Some studies related to con-
tour control are reported in other applications [6,7]. Yang [8] proposed a
contour error estimation method for contour following applications; the
method was found to improve the tracking performances greatly. Zhang
[9] presented an analytical prediction and compensation for contouring

errors in five-axis machining of splined tool paths. Cheng [10] attempted
to reduce contour error for free-form contour following tasks of biaxial
motion control systems by using a fuzzy logic-based feed rate regulator.
The concept of cross-coupled control of multi-axis was also proposed in
refs. [11–13]. It has been reported that the cross-coupled controller has
a better contouring accuracy than the uncoupled one.

In this paper, the cross-coupled pre-compensation (CCP) is applied
in a hydraulic robotic excavator. It is combined with the nonlinear
proportional–integral (PI) controllers of each actuator to accomplish
coordinated control of the unmanned excavator. The remainder of this
paper is divided into five sections: Section 1 presents an overview of
the nonlinear PI controller for a single actuator. The introduction of
CCP algorithm is given in Section 2. Section 3 provides details on the
application of the proposed algorithm. Section 4 shows experimental
validation of CCP and nonlinear PI controller. This section also discusses
additional considerations, which are required to apply the algorithms.
And the experimental results are also given in the section. Finally,
Section 5 presents conclusions and future directions for this work.

2. Nonlinear PI controller for a single actuator

The nonlinear PI controller has the same functional form as the
normal PI and is expressed by Eq. (1):

u ¼ KPeþ KII ð1Þ

where uis the control value,eis the error of the target value,KPis the
proportional factor,KIis the integral factor, and Iis the integral value.
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However, for the nonlinear PI, Iis different from the normal PI
because it changes with the sampling time. The integral value can
be expressed as Eq. (2)

It ¼ It−ΔT þ eΔT þ Ka€qinΔTð Þ a

aþ _e2
ð2Þ

where t is the sampling time, ΔT is the sampling interval, It is the
integral factor of the current sampling, It−ΔT is the integral factor
of the last sampling, Ka is the integral factor of the angular acceleration,
€qin is the target angular acceleration, _e is the difference change rate, and
ais the compare factor.

If _e ¼ 0, then a
aþ _e2

¼ 0; if _e ≠ 0, then a
aþ _e2

b 1; and if j _ej→∞, then a
aþ _e2

→0. Here, the value of a determines the convergence rate.
€qin reduces the lag or overshoot when the actuator starts, stops, or

changes direction. In addition, €qin could continuously changeu when
the target value changes. This approach could help avoid short pulse
excitation and maintain stability.

3. CCP algorithm introduction

It is known that the bucket trajectory is composed of many discrete
points and that the operations, such as digging and ground leveling,
always occur in the vertical plane. Thus, the trajectory can be considered
to approximately consist of many short straight lines in the same plane.

Taking a linear path in Cartesian coordinates as an example, Fig. 1 shows
the definition of the variables in this algorithm and their relationships.

In Fig. 1, AB is a planned straight path in the bucket tip trajectory, A
is the current expected set-point, B is the next expected point, and C is
the current actual position of bucket tip.θ is the angle between AB and
X-axis, e is the tracking error, andex and ey are the tracking error compo-
nents along theX- andY-axis, respectively.ε is the contour error. Similarly,
εxandεy are the contour errors in the X- and Y-axis, respectively. From
Fig. 1, it can be found that

εx ¼ ex sin
2θ−ey sinθ cosθ ð3Þ

εy ¼ ex sinθ cosθ−ey cos2θ ð4Þ

To reduce the contour error, the planned path should be pre-
compensated. Thus, the next expected point B is compensated to
pointB′, the coordinate of which is (xB−KCεx,yB+KCεy), where
KC is the gain coefficient. In this way, the next actual position of the
bucket tip could be much closer to the expected point B, thereby
improving tracking and regulating accuracies.

4. Application of the nonlinear PI controller with CCP in a robotic
excavator

In a robotic excavator, because of the complexity of the structure,
severalmethods are used to describe a joint position. The compensation
for the bucket tip contour error is specified in a world coordinate
system, but the control signal of each actuator is specified in the spatial
coordinate system. As a result, to implement the CCP, coordinate trans-
formation is required.

Fig. 2 depicts the D–H coordinates of the excavator. For a 3.5-ton
excavator, the D–H coordinate parameters are shown in Table 1.

q0–q3are the angles of each actuator; x, y, and z are the coordinates
in the x-, y-, and z-axis, respectively; and ζ is the bucket angle. If the
angle q(t)=(q0(t),q1(t),q2(t),q3(t))T is measured, then according to
the robotic structure, the bucket tip coordinates {x,y,z,ζ}T can be calcu-
lated by using Eq. (5):

x ¼ cos q0ð Þ a3 � cos q1 þ q2 þ q3ð Þ þ a2 � cos q1 þ q2ð Þ þ a1 � cos q1ð Þ½ �
y ¼ sin q0ð Þ a3 � cos q1 þ q2 þ q3ð Þ þ a2 � cos q1 þ q2ð Þ þ a1 � cos q1ð Þ½ �
z ¼ a3 � sin q1 þ q2 þ q3ð Þ þ a2 � sin q1 þ q2ð Þ þ a1 � sin q1ð Þ
ζ ¼ q1 þ q2 þ q3
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By reverse processing, if {x,y,z,ζ}T is given, then q(t)=(q0(t),q1(t),
q2(t),q3(t))Tcan also be calculated.

Usually, when an excavator is digging, the cab does not swing (q0≡0
and y≡0). The CCP control only calculates the compensation for the

Fig. 1. Definition of the variables in the cross-coupled algorithm.

Fig. 2. D-H coordinates of the robotic excavator.

2 D. Wang et al. / Automation in Construction 64 (2016) 1–6



Download English Version:

https://daneshyari.com/en/article/246220

Download Persian Version:

https://daneshyari.com/article/246220

Daneshyari.com

https://daneshyari.com/en/article/246220
https://daneshyari.com/article/246220
https://daneshyari.com

