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A database for various pavement mixtures which were tested at the IGMAT Building Materials Institute,
Ljubljana, during the period from 1998 to 2009was established. This database consists of 17,296 asphaltmixture
analyses. Artificial neural networks were used in this work to estimate air void content in aggregate mixture of
several stone fractions for 7 types of asphalt concrete mixtures (AC 32, AC 22, AC 16, AC 11, AC 11 PmB, AC 8,
AC 8 PmB) produced according to EN 13108-1. The main aim of the paper is to model the relationship between
different parameters and air void content in aggregatemixturewith artificial neural networks andmultiple linear
regression. The proposed method uses feed-forward neural networks with error back-propagation algorithm.
Two different programs for modelingwith artificial neural networks, NTR2003 andWEKA toolkit, were used. Be-
fore modeling air void content in aggregate mixture outliers among data were determined. Then, the artificial
neural network analysis and multiple linear regression were done for each asphalt mixture and also for all
mixtures together. Modeling of air void content in aggregate mixtures in general showed that linear models
work better than artificial neural network models in the cases of specific asphalt mixture. In the case of analysis
of all asphalt mixtures together, neural networks detected real hidden relationships between data and are
therefore more effective than the linear model. Feed-forward neural networks are entirely appropriate models
for an effective preliminary estimate of air void content in various aggregate mixtures.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Asphalt mixture consists of aggregate mixture, binder and air voids.
Bitumen, which acts as a binder in asphalt compositions, is a visco-
elastic material and is an essential component in the composition of as-
phalt mixtures. The second component of the asphalt is aggregate
which does not show any temperature and time dependent properties
and therefore represents the mechanical resistance. Asphalt used for
pavement constructions is in general exposed to various external fac-
tors. Therefore, with pre-selection of appropriate materials technolo-
gists are looking for ways to design such asphalt mixture that would
have properties which prevent the negative consequences, e.g. perma-
nent deformations, cracks due to fatigue, and temperature. They deal
with different types of modeling, analysis, experimentation and data
processing.

During recent years automation in measurements and evolution in
computer technology enable the creation of large databases and their
analyses. One way of modeling various parameters or properties is arti-
ficial neural networks [1,2,3]. In the field of artificial intelligence they
are the most widely used method which is also used for solving

engineering problems. They are mainly used as forecasting models be-
cause they do not require prior knowledge and have high accuracy. In
the area of road construction Saltan andTerzi [4] used them for the eval-
uation of carriage-way deformations. Tusar and Novic [5] used them for
data exploration on standard asphalt mix analyses. Sukru and Oruc [6]
modeled the relationship between setting time, the quantity of added
cement, asphalt content of the waste and the modulus of bituminous
emulsions by artificial neural networks. Neural networks have been
used for the prediction of the compressive strength of concrete [7,8],
for stability prediction of tunnel construction [9], for the prediction
the time required to carry out earth works and their cost [10], in plan-
ning delivery system for prepared pre-mixed concrete [11], in theman-
ufacture of fresh concrete with addition of rubber [12], for modeling
corrosion current of reinforced concrete [13], in the modeling process
of building construction [14], for evaluating the force of friction between
thewheel and the road [15], formodeling lower bearing unboundpave-
ment layers [16], for modeling permanent deformation of polypropyl-
ene modified asphalt mixtures [17] and for many other engineering
problems.

Artificial neural networks are less complicated and smaller than bio-
logical neural networks. They consist of neurons which are linked with
connections described by their weights. The particularity of artificial
networks is that they are not programmed but trained. For the training
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of networks two sets of data are required. The first set is a training set
and the second one is a testing set which is needed to establish the effi-
ciency of training. An important phase of neural network modeling is
the determination of weights applied during network training. There
are several methods of training. One of the widely used methods is a
generalized delta rule or error back-propagation algorithmwhich is ex-
plained in detail by Rumelhart and McClelland [19]. To estimate the air
void content in aggregate mixture feed-forward neural networks with
error back-propagation learning algorithmhave been used. The learning
phase of artificial neural networks is influenced by a variety of parame-
ters, such as maximum number of iterations, learning step size, geome-
try of the network and, most importantly, data. Considering the
geometry of artificial neural networks it cannot be precisely defined
which one corresponds to the specific data. We decided to deal with
networks with two or three hidden layers. The Fortran program
NTR2003 and library of neural networks in the program WEKA toolkit
have been used. The algorithms used in both programs are not entirely
compatible, primarily due to output functions and the processes in the
learning phase.

This paper describes the use of artificial neural networks for the es-
timation of air void content in aggregate mixture, which is defined as
mixture of different stone fractions without bituminous binder. Air
void content in aggregatemixture is determined in order to find the op-
timal composition of the fractions of stone material. With the optimum
composition of aggregate fractions the maximum density or the mini-
mum amount of air voids in stone material is achieved.

Initially, we assumed that the sieving curve and the density of
aggregate mixture are the most influential factors affecting the air
void content in the aggregate mixture. Surprisingly, with preliminary
investigation we found out that the content of the bituminous binder
as an influential factor always improved models. Air void content in
aggregate mixture cannot be exactly calculated from sieve curve,
density of stonematerial and bitumen content. Only a rough estimation
has been made. There are two reasons why it cannot be calculated
exactly. Firstly, the optimum composition of aggregate fractions can
be determined if all grains have the same shape. Because of the irregular
shapes of aggregate the optimum composition of aggregate fractions is
a nonlinear problem. Secondly, additional disorder represents mastic
and causes random turning of aggregate grains, which prevents
compounding of grains in the densest composition.

The requirements (standards, specifications, guidelines) lay down
the permitted range of air voids in asphalt mixtures. At the same time,
also the required bitumen content or the rate of void filling with bitu-
men is often determined. By considering both restrictions, the required
air void content in aggregatemixture can be calculated. Air void content
in aggregatemixture is therefore important because it is indirectly spec-
ified in the requirements.

2. Data

The collected data are the test results of asphalt mixtures tested at
the IGMAT Building Materials Institute [18] during the time period
from 1998 to 2009. Data used in the analyses are: binder content,
sieve analysis, maximum density of aggregate and air void content in
aggregate mixtures (see Table 19 in Appendix A).

Firstly, each asphalt concrete mixture produced according to EN
13108-1 (e.g. AC 32 means asphalt concrete mixture with nominal ag-
gregate size 32 mm) has been analyzed from the database separately;
at the end an analysis of all mixtures together was performed as well:

• AC 32 (time period 2006/2009)
• AC 22 (time period 2006/2009)
• AC 16 (time period 2006/2009)
• AC 11 (time period 2006/2009)
• AC 11 PmB (time period 2006/2009)
• AC 8 (time period 2006/2009)

• AC 8 PmB (time period 1998/2005)
• modeling of all seven mixes together.

Input parameters in all cases are: binder content, sieve analysis and
maximumdensity of aggregate; output parameter is: air void content in
aggregate mixtures.

A large data base has been available. In the case of AC 22 eleven pa-
rameters for modeling air void content in aggregate mixture have been
analyzed resulting in 381 input–output data pairs (see Table 19 in
Appendix A). The number of parameters and the number of input–out-
put pairs of data depend on the analyzed asphalt concrete mixture.

Firstly, we identified the parameters that had a significant impact on
the output data. Then we searched outliers for each such parameter
(input data). The exact procedure for the determination of outliers is de-
scribed below:

1. Randomly mix all input–output data pairs.
2. Determine the coefficients of the linear regression.
3. Set the null hypothesisH0: single properties or input data have no ef-

fect on the output data (air void content in aggregate mixture).
4. Determine the P-value. P-value is the probability of Type I error in

statistical test. Here a T-test was implemented. The P-value is evalu-
ated by 2 ∗ FT(−T) = P-value, where FT is CDF of T-distribution.

5. For those coefficients where the P-value is low (b0.01) the value of
coefficient is significantly different from zero; therefore, the null hy-
pothesis can be rejected.

6. In such cases the single parameter value (property value) is checked.
7. Assume a normal distribution and determinewhether the individual

values deviate from these assumptions. If deviation is large or if the
probability that such value occurs is very small, then the data are la-
beled as outliers. The limit probability where the data are labeled as
outliers is p = 1/number of data/10 (Fig. 1).

In items 1 to 5 the parameters which contain outliers are identified.
In items 6 to 7 the outliers are sought.

3. Feed-forward artificial neural networks

Fig. 2 represents the scheme of an artificial neural network. Neuron
ui is connectedwith a fewneuronswhich send their output signal ok,j,l to
neuron ui. Output signals are multiplied by weightswij. A threshold sig-
nal bi is added to the sum of weighted signals. This gives the value of the
signal of neuron ui. Then the output function f copies the value to the
output signal oi of neuron ui. Connections between neurons and the out-
put function may be regulated in advance.

The symbols in Fig. 2 have the following meaning:

ui value of neuron i,
uj value of neuron j,
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Fig. 1. Determination of the outlier.
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