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An algorithm for automatic detection of planar and quasi-planar surfaces fromMobile Laser Scanning (MLS) data
is proposed. The method uses line clouds for efficient data reduction of point clouds fromMLS. The singular ge-
ometry of theMLS data onplanar surfaces is used to transform the original point cloud into amore structured line
cloud, which allows the simplification of the initial data and identification of surfaces by grouping lines. From
each profile in the original dataset, strings of aligned points are identified, and a line cloud is defined by the end-
points of these strings. Lines are subsequently grouped following a set of parallelism, proximity and merging
rules. The algorithmwas tested using an urban dataset, and validated on 27 surfaces, by assessing the correctness
and completeness of the point and line grouping. Correctness was, in all the surfaces, higher than 99%, and com-
pleteness was 90% on average.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Laser scanning surveying techniques have been widely and increas-
ingly used inmany fields (such as forestry, or road and urban planning),
in the last few decades [1–4]. The use of these techniques, typically pro-
duces a 3D point cloud, whose density, accuracy and spatial point distri-
bution may significantly vary, depending on the platforms or surveying
devices used.

From the early 90s the use of ALS (Airborne Laser Scanning) became
widespread, as it provides spatial information of vast areas in a short pe-
riod of time, with an adequate point density and accuracy for large ob-
ject detection and extraction [5,6]. Later, the first Terrestrial Laser
Scanners (TLS) appeared. They provide, in general, more accurate and
dense point clouds than ALS, but they have some spatial limitations pro-
duced by their static nature, such as occlusions, or higher spatial hetero-
geneity within the point cloud. The data from ALS systems is usually
obtained from an almost-nadiral perspective, which confers to the ALS
point clouds a homogeneity that TLS data lacks [7]. However, for the
same reason, and contrary to ALS, TLS systems are often able to register
points on vertical surfaces.

In the 2000s, the first commercial Mobile Laser Scanners (MLS)
arose [8–10]. These systems usually consist in (i) one or more LiDAR
(Light Detection and Ranging) sensors, (ii) an IMU (Inertial Measure-
mentUnit), and (iii) a GNSS (Global Navigation Satellite System)device,
all of them deployed on a van or another type of vehicle [11–13]. MLS
are able to avoid some of the said drawbacks of ALS and TLS systems:

(i) point accuracy and density can be significantly higher than those of
ALSs, (ii) point clouds often follow a certain pattern (i.e. produced by
the movement of the sensors and the fixed relative perspective from
the MLS vehicle), or the fact that (iii) some occlusions are avoided by
using more than one sensor [14–17]. Nevertheless, MLS systems have
some disadvantages and limitations. For instance: (i) point accuracy re-
lies on the GNSS and the IMU, thus it is usually lower than that obtained
with TLS systems, and (ii) the accessibility of the scanning targets or
areas is limited by the vehicle or platform [18–20,9]. More recently,
some other devices or variations of the aforementioned systems have
appeared. For example, the Finnish Geodetic Institute has developed a
Personal Laser Scanner (PLS) that goes beyond some of the accessibility
limitations of the MLS systems [21,9].

Feature identification through visual recognition of a point cloud from
a laser scan often constitutes a relatively simple task, in the sense of using
adequate visualization software that even a non-trained user would be
able to identify several features in the point cloud, when there is a prior
knowledge from reality, e.g. a car, a building, or a tree. Such methods
are widely used in order to test the accuracy of the systems and the per-
formance of algorithms for automatic feature extraction or segmentation
from LiDAR point clouds [20,22–26]. However, detection and recognition
from visual inspection is a very time and resource consuming task.

Algorithms for feature detection have arisen and evolved alongwith
LiDAR platforms and devices. Some algorithms/methods are general
and therefore susceptible of being applied to any 3D point cloud
[27–30], whereas, some other methods are specific for a target geome-
try, a point of view, or any other particular characteristic of a platform,
device, or a special setting of them [23,31–34].

One of the main targets for automatic detection algorithms from 3D
point clouds is surface detection and identification, since planar or ruled
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surfaces are, together with linear and cylindrical features, the most used
shapes for geometrically defining the majority of the objects represented
in urban and road cartography and models [35]. Some studies have ad-
dressed algorithms and methods for surface identification and extraction
fromMLS data in the last few years. However, most of them analyse ex-
clusively planar surfaces, or use plane fitting techniques for all the
surfaces.

In 2011, Jochem et al. [36] published a method for the extraction of
vertical facades fromMLS point clouds based on the use of Hough trans-
form. In the method, seed points are randomly selected, and using a re-
gion growing algorithm, the plane parameters are estimated. This study
was focused on vertical wall detection, and the detected planes are re-
duced to 2D lines in a vertical projection. Neither completeness nor cor-
rectness were specifically assessed in this study, but the authors
affirmed that completeness could reach 50–74%.

More recently, Fan et al. (2014) [37] used an algorithm for general
man-made objects, including buildings. The original data was divided
into three layers using the height above ground level (AGL). Three
fixed values were set for AGL ([i]: below 2 m, [ii] between 2 and 5 m,
and [iii] above 5 m), and the points within each layer were projected
onto a horizontal raster. Finally, a set of rules was established in order
to identify objects from the footprints in the three layers. Similar foot-
prints in at least the first two layers were considered a possible vertical
façade of a building, which was subsequently checked using its convex
hull and neighbourhood. The performance of the method was analysed
by checking the detection rate (70% for buildings) and a further classifi-
cation of the detected features. Misdetections were due to occlusions
and low point density in the horizontal layers that the algorithm set.

Although Yang and Dong [38] was specially focused on pole-like ob-
ject segmentation, it addressed a method for planar surface segmenta-
tion that included the use of point intensities. Points were classified
according to their attributes after a PCA (Principal Components Analy-
sis) transformation for a further point cloud classification using SVMs
(Support Vector Machines). Finally, segmentation was performed by
using a set of geometric rules and amerging operator. Mergingmethods
for planar surfaces were based on normalized cuts, taking into account
Euclidean distance between patches and the angle between normal
vectors. The performance of the method was analysed by evaluating
the classification and segmentation precision (up to 96.8%) and recall
(up to 93.4%).

Lari and Habib [39] showed algorithms aiming at identifying and
segmenting planar and linear or cylindrical features/objects, taking
into account local point densities. Points were classified using PCA,
and subsequently clustered using plane fitting and adaptive cylinders.
The detected features were finally extracted using a parameter-
domain segmentation approach. The algorithm was tested using both
real and simulated MLS, ALS and TLS datasets. As regards the simulated
MLS data (i.e. a synthetically generated MLS point cloud), 93.3% of the
planar surfaces were detected. For real test data, a threshold was
established by setting an acceptable noise level (i.e. distance from
each point to the fitted plane). In 45% of the surfaces, the noise level
was lower than the threshold (established at 4 cm). Misdetections
were due to the lack of density and PCA classification errors.

Some other studies (not specifically focused on surface extraction or
MLS data processing) used the concept of 2D profiles. For instance, the
algorithm shown in Sithole and Vosselman [40] used the intersections
of two orthogonal sets of profile lines in order to classify ALS points
into three different categories: (i) bare terrain, (ii) detached objects,
and (iii) attached objects. Unconnected profile lines were obtained by
applying a set of connectivity rules, for their subsequent grouping and
cluster classification based on line group size, height and connectivity.

In 1994, Jian and Bunke [41] proposed a method for the segmenta-
tion of planar surfaces in range images of simple objects using line
grouping (based on the work from Pavlidis and Horowitz [42]). More
recently, Howarth et al. [43] used the sameprinciples for surface extrac-
tion from image and range data.

Single scan lines fromMLS data were analysed in by Lin and Hyyppä
[44], using the k-segments defined by Verbeek et al. [45], for two-
dimensional primitive fitting, and the use of similarmethods for further
three-dimensional geometrical analysis is suggested.

Lehtomäki et al. [23] suggested the concept of grouping consecutive
scan lines for pole-like object detection. This study developed the idea of
segmenting single scan lines, for a subsequent line grouping process
based on shape and position attributes of the segments.

The objective of this work is to develop an algorithm for surface de-
tection fromMLS data, based on simple geometric principles that over-
comes someof the limitations of the existingmethods: (i) Itmust not be
limited to the detection of plane surfaces. It is frequent that some of the
main targets of surface detection algorithms from LiDAR data are not
completely flat, e.g. some slightly curved building facades, road surfaces
or walls. The proposed algorithm has to be able to deal with some non-
flat surfaces (i.e. ruled and/or slightly curved surfaces). (ii) It must not
be limited to vertical surfaces (as algorithms exclusively focused on ver-
tical facades), but it has to be able to detect them, even in the cases of
non-strictly-flat surfaces. (iii) It simplifies the point cloud into a smaller,
meaningful and easy-to-deal-with line-based structure. This line struc-
ture is based on previous work related with 2D and scan lines profiling
[41,43–45]. (iv) It has to be fully automatic, thus no training data is re-
quired, contrary to methods that use supervised classification tech-
niques, and (v) the only data required by the algorithm are XYZ
coordinates and time attribute of the original points, hence no other
data, such as point intensities, are needed.

The proposed algorithm is based on an initial structured simplification
and transformation of the point cloud into a line cloud, i.e. set of straight
segments generated and organized from the original point cloud. The line
cloud is stored in a group of vectors, with a very simple structure that
avoids both duplicates and nonessential points. Lines are subsequently
grouped following a set of simple geometric rules, and points and lines
conforming the target surfaces are identified and labelled.

2. Methodology

MLS systems are typically based on rotating LiDAR sensors, which
take measurements of points that could be grouped as lines when
they hit regular surfaces. For instance (as shown in Fig. 1A) most of
the existentMLS systemswould create, if theywere used in a cylindrical
tunnel (following the directrix line), a string of points that could be
interpreted as a helical line. In the same way, using the MLS system
along an ideal rectangular-section tunnel or a very simply-shaped street
would create a group of connected straight lines (see Fig. 1B–C). The
spatial configuration of those lines depends on the setting parameters
of the system, i.e. speed of the vehicle, sensor trajectory, scanner orien-
tation, and sensor measurement and rotation rates [17,23].

Our method identifies planar or ruled surfaces from straight seg-
ments that can be extracted from the scanned profiles. Strings of points
can be considered as lines (i.e. polylines whose nodes are the points
from a profile). However, in general, when the laser beams hit some
ruled or plane surfaces, the polylines that can be formed consist of a
group of consecutive and aligned segments. These small segments,
which join each point from a profile with the next one, can be grouped
and, therefore, simplified by eliminating all the intermediate points,
thus just keeping the first and last. In that way, all the points from the
same profile and the same plane surface can be simplified and repre-
sented by a single straight segment.

Once the original point cloud is transformed into straight segments,
i.e. the point cloud is transformed into a line cloud, they are grouped fol-
lowing parallelism and node-proximity criteria.

The process is carried out in four stages:

1. Identification of polylines in the point cloud. At this first stage, points
are considered nodes of polylines and the possible gaps are identified
in order to split different lines.
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