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Introduction

As the two main schools of statistical reasoning through which
inference to the population is made by analysing data and incor-
porating uncertainty of measures, Bayesian and frequentist
philosophies have been used to estimate diagnostic test perfor-
mance and the true prevalence of diseases. However, controversies
exist between the two philosophies, such as the use of fixed pa-
rameter values in the frequentist approach or the inclusion of prior
information in the Bayesian approach. So, is the philosophical debate
between these two approaches still relevant for such practical
questions?

The Bayesian philosophy arose from a statement made by the
Reverend Thomas Bayes (1702–1761), a British mathematician and
theologian, who was the first to apply statistical probability induc-
tively. According to Bayes, ‘all forms of inference are based on the
validity of their premises’ and ‘no inference can be known with cer-
tainty’ (Thrusfield, 2005). In 1814, the French mathematician, Simon-
Pierre Laplace published a mathematical description based on Bayes’s
idea (Gelman et al., 2004). In the Bayesian philosophy, scientific
observations do not exist in a vacuum and information available prior
to making a series of observations influences the interpretation of
those observations (Thrusfield, 2005).

Bayesian analysis can be regarded as a process of adjusting and
updating the likelihood of an event based on data. Thus, popula-
tion parameters, such as sensitivity (Se) and specificity (Sp), are
assumed to have a probability distribution representing our prior
knowledge of their values. This information is combined with ob-
served factual field data in a model for estimation (Speybroeck et al.,
2012a). For Bayesians, a parameter is assumed to have an intrinsic
probability distribution with a 95% credibility interval (Gardner,
2002). Thus, Bayesian principles are often applied in order to esti-
mate disease prevalence and test characteristics, especially when
there is no gold standard (Enøe et al., 2000; Branscum et al., 2005;
Rutjes et al., 2007; Meyer et al., 2009).

The frequentist philosophy emerged in the 20th century with
the works of Fisher (1922) and Neyman and Pearson (1928a,b), who
enunciated the concept of relative frequency (Vallverdú, 2008). This
concept sustains the idea that a probability is a frequency deter-
mined from an experiment repeated a large number of times.
Frequentist statisticians attempt to draw conclusions by focussing
primarily on results obtained from experiments or samples. In the
frequentist reasoning, a parameter is a fixed value with a 95% con-
fidence interval derived from the sample. It is assumed that this 95%
confidence interval would contain the true value of the parameter
95% of the time if the estimation were repeated a large number of
times.

Therefore, Bayesian philosophical methods are based on the idea
that unknown quantities, such as population means or proportions, have
a probability distribution that expresses our prior knowledge or belief
about such quantities, before we add the knowledge gained from ob-
servational data. Bayesian inference considers the data to be fixed and
parameters to be random, because they are unknown. In frequentist
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methods, prior knowledge is apprehended differently and population
means or proportions are considered as fixed values (Bland and Altman,
2002). Frequentist inference considers the unknown parameters to be
fixed and the data to be random.

Bayesian and frequentist methods have been published to handle
a variety of situations in which diagnostic tests are evaluated. In
this article, we consider the requirements, limitations and contro-
versial points of the methods proposed for estimating test
performance and the true prevalence of disease, using the case where
one test or a combination of two imperfect diagnostic tests is applied
in the absence of an appropriate gold standard.

Estimating the true prevalence of disease and diagnostic test
performance with imperfect tests

The ability of a diagnostic test to distinguish correctly truly dis-
eased from non-diseased individuals, when applied to a randomly
chosen population, is necessary so as to understand the epidemiol-
ogy of the disease, to implement disease control programmes and to
evaluate new diagnostic tests (Greiner and Gardner, 2000; Lewis and
Torgerson, 2012). Mathematically, the estimation of test performance
parameters is essentially the same question as estimating true prev-
alence (Lewis and Torgerson, 2012). The true prevalence (the proportion
of truly diseased individuals in the population of interest) is also an es-
sential parameter required to appraise the impact of a disease in a
population of interest and to prevent biased estimations of disease
burden (Dohoo et al., 2003; Speybroeck et al., 2012a).

The accuracy of estimation of true prevalence depends on the
performance parameters of the test(s) to be applied (Ihorst et al.,
2007). Among performance indicators of a diagnostic test, Se and
Sp are the most commonly used. Test Se or Sp indicates the prob-
ability that a truly infected or uninfected individual yields a positive
or negative test result, respectively. Ideally, Se and Sp values for a
given test should be estimated from a reference population with a
clearly identified status determined by historical (accurate) infor-
mation or, more commonly, by a relevant gold standard (Se = 1 and
Sp = 1) that is able to discriminate infected/diseased individuals from
uninfected/non-diseased individuals in a population (Dohoo et al.,
2003). When such a perfect test exists, an estimation of perfor-
mance parameters of the new test, as well as true prevalence, can
be done easily (Rogan and Gladen, 1978).

In practice, such a test is hardly ever available, given that the diag-
nostic performance of a test is influenced by a number of endogenous
and exogenous factors (Rutjes et al., 2007). As an alternative, a com-
bination of multiple imperfect tests (Se < 1 and/or Sp < 1) may be used
to estimate disease parameters (Black and Craig, 2002). With multi-
ple tests, overall misclassification errors are reduced and are expected
to be lower than with a single imperfect test.

For example, the isolation and identification of Brucella spp. is
considered as the reference standard method; a positive test result
provides an unequivocal diagnosis of a positive case of brucellosis
(World Animal Health Organisation, 2009). However, these methods
are not always feasible in diagnostic investigations. Therefore, di-
agnosis must be based on imperfect serological methods, such as
the Rose Bengal test (RBT) and the indirect ELISA (iELISA), which
are the two OIE prescribed tests for trade and are commonly used
in combination for the diagnosis of brucellosis (Nielsen, 2002;
Saegerman et al., 2004; World Animal Health Organisation, 2009;
Godfroid et al., 2010; Sanogo et al., 2013).

Estimation of true disease prevalence and test characteristics with
combined imperfect tests poses challenges, including (1) potential
misclassification errors, (2) possible dependence between tests, and (3)
sparseness of data (Cowling et al., 1999; Dohoo et al., 2003; Messam
et al., 2008). Both Bayesian and frequentist approaches have been pro-
posed to tackle these challenges.

Estimation with a single test

In the simple case, where a single imperfect diagnostic test is applied
in a population of interest, a total of three parameters must be esti-
mated, whatever the method, namely, Se, Sp and true prevalence. In
this case, the apparent prevalence (the proportion of positive test results)
is the only information given by the data. From a frequentist perspec-
tive, estimation can be done only if fixed external information is provided
on the values of Se and Sp, but this is difficult, since test properties are
known to be context-specific and cannot realistically be assumed to
be fixed and known in advance, such as the values given by the man-
ufacturer of a test (Thrusfield, 2005).

As far as external information has to be included for estima-
tions, Bayesian methods seem to be more helpful in obtaining
acceptable and realistic results, since they offer the possibility of
including the known uncertainty with respect to diagnostic test char-
acteristics, while testing whether data conflict with prior information
(Joseph et al., 1995; Berkvens et al., 2006; Speybroeck et al., 2012b).
However, the accuracy of Bayesian estimates is dependent on the
availability and quality of prior knowledge, which may be a limit-
ing factor and may also conflict with frequentist philosophy.

Estimation with more than one test

When a combination of at least two tests is used, the test results
for a given individual could be interpreted either in series (only
animals that test positive to both tests are considered to be test pos-
itive) or in parallel (animals that test positive to one test, to the other
test or to both tests are considered to be test positive) (Black and
Craig, 2002). A combination of tests may also result in depen-
dence or correlation between the test results. As a consequence,
either conditional independence or conditional dependence as-
sumptions need to be made for accurate estimation of disease
prevalence and test properties (Jones et al., 2010).

Conditional independence implies that the results of the second
test (T2) do not depend on whether the results of the first test (T1)
are positive or negative among infected (or uninfected) individu-
als (Enøe et al., 2000; Gardner et al., 2000). If we consider the skin
test or the iELISA, two tests referred to above for the diagnosis of
brucellosis, conditional independence is likely to exist in relation
to their respective targets (cellular response for the skin test and
humoral response for iELISA), especially in a low prevalence context
(Saegerman et al., 1999). In this case, calculation of test Se and Sp
will depend mainly on the testing strategy adopted (in parallel or
in series) (Dohoo et al., 2003).

Mathematically, assumptions such as conditional independence and
a constant prevalence over sub-populations are needed to estimate prev-
alence (Enøe et al., 2000). These assumptions are necessary so as to
reduce the number of unknown parameters to be estimated (Berkvens
et al., 2006). Gart and Buck (1966) and Staquet et al. (1981) proposed
frequentist methods assuming conditional independence between a new
test and a reference test with known Se and/or Sp. However, test Se
(stage of infection) and Sp (similar immunogenic component) values
are influenced by the characteristics of the population in which the test
is applied (Saegerman et al., 2004; Berkvens et al., 2006) and cannot
be considered as intrinsic constant and known parameters (Thrusfield,
2005). Moreover, assuming fixed values might not be realistic, since
many factors, such as the presence of cross-reacting agents (Saegerman
et al., 2004) and low infection pressure, may influence test parameter
values (Speybroeck et al., 2012b).

Hui and Walter (1980) proposed another major frequentist method
to deal with the case where Se and Sp values of the reference test are
unknown. In addition to an assumption of conditional independence,
this approach required testing at least two populations with distinct
prevalences of disease, but constant Se and Sp (Hui and Zhou, 1998;
Enøe et al., 2000; Dohoo et al., 2003). The approach was extended to
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