
Combining structural performance and designer preferences in
evolutionary design space exploration

Caitlin T. Mueller ⁎, John A. Ochsendorf
Building Technology Program, Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 May 2014
Received in revised form 21 November 2014
Accepted 26 February 2015
Available online 14 March 2015

Keywords:
Conceptual design
Structural design
Structural optimization
Design space exploration
Evolutionary algorithms

This paper addresses the need to consider both quantitative performance goals and qualitative requirements in
conceptual design. A new computational approach for design space exploration is proposed that extends existing
interactive evolutionary algorithms for increased inclusion of designer preferences, overcoming the weaknesses
of traditional optimization that have limited its use in practice. This approach allows designers to set the evolu-
tionary parameters of mutation rate and generation size, in addition to parent selection, in order to steer design
space exploration. This paper demonstrates the potential of this approach through a numerical parametric study,
a software implementation, and series of case studies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the conceptual design of buildings and bridges, designers must
consider a wide range of goals related to performance. These include
quantitative, measurable goals such as structural efficiency, cost, and
embodied energy, as well as qualitative goals that cannot be expressed
numerically, such as aesthetics, constructability, and contextual appro-
priateness. The designer's early-stage responsibilities include balancing
these requirements to attain a satisfactory initial design concept.

Since the advent of computational tools, digital methods have
emerged to help designers assess both quantitative and qualitative
performance. For example, structural analysis software provides feed-
back on structural performance, and computer-aided drawing and
modeling software can produce images and renderings that convey
aesthetic performance. However, few computational tools exist that
allow the designer to consider these two types of performance in one
environment. Furthermore, while most widely used tools provide feed-
back to the designer, very few provide guidance, or suggested changes
for design improvement. This leads to designers using software in a
time-consumingtrial-and-error mode that limits the number of design
alternatives that can be considered, potentially reducing the quality of
the chosen solution.

A potential remedy for design guidance is optimization, an ap-
proach that computes the best performing solution according to

mathematically formulated objectives and subject to mathematical-
ly formulated constraints. There are a multitude of available optimi-
zation algorithms, but nearly all require the objective function to be
quantitative. This means that while optimization can address some
conceptual design needs, it is not an appropriate approach for meet-
ing unquantifiable yet important goals.

The mismatch between optimization's capabilities and the needs of
the practical design process is one likely reason for the limited adoption
of optimization in the building industry [1]. A second, related reason
deals with the concept of the optimum itself: since many qualitative
goals are also subjective, it is impossible to say that one design solution
is unequivocally the best in most design problems. Moreover, the com-
bination of two or more competing goals leads to a subjective problem
in deciding the relative tradeoff, evenwhen both goals can be objective-
ly evaluated on their own. Furthermore, goals in conceptual design are
sometimes fuzzy or unknown, and designers adjust what they are
looking for during their design explorations. To support adaptive goal
adjustment, an ideal computational approach should expose designers
to a diverse range of alternatives that may inspire new goals or spark
new ideas. Because optimization produces a single solution to a design
problem, it is unable to serve this role in its traditional form.

As an illustration of these issues, Fig. 1 shows a simple geometry op-
timization problem for a planar truss and the resulting design space for
a weight minimization objective. This problem has two local optima,
shown in the figure. However, it is also noteworthy that the design
space is relatively flat; this means that there are many designs that
vary significantly in their geometry while performing similarly to the
optimal designs. Fig. 1 also shows three groups of designs that perform
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within 10%, 20%, and 30% of the global optimum respectively. These
designs exhibit significant aesthetic diversity despite their similar struc-
tural performance.

A second example is shown in Fig. 2, which depicts two design
alternatives for the lateral and gravity load-resisting system of an
airport terminal. The first design is a standard rigid frame, while the
second is a shaped frame of similar volume that creates a richer archi-
tectural experience by opening the interior space up toward the
windows, with more structural depth in the back of the space. Due to
the static indeterminacy of a fixedbase rigid frame, many high-
performing options for the shaped inner profile are possible, and
again, there are opportunities to meet unformulated, qualitative goals
by compromising slightly on quantitative performance, and to provide
a much broader range of design possibilities.

The research presented in this paper aims to take advantage of these
opportunities by providing a way for designers to explore structural
design solutions in a directed, performance-conscious manner. In
contrast with standard optimization, the approach used here addresses
qualitative design goals and constraints by incorporating input from
human designers, in addition to considering formulated quantitative
objectives. This type of optimization algorithm is classified as interactive
(sometimes called human-guided or human-computer) optimization

and is able to overcome the previously stated drawbacks of more
conventional approaches.

1.1. Interactive optimization

Interactive optimization comprises a broad class of algorithms and
approaches united by the inclusion of human input in the optimization
process. An overview of the range of these approaches is given in [2].
Like standard optimization methods, interactive optimization methods
can be divided into two groups: those that use gradient information
and those that use heuristics. Gradient-based methods have the advan-
tage of better performance and guaranteed convergence rates but are
usually limited to design spaces that have mathematical properties
not usually found in practical problems, such as continuity and differen-
tiability. Heuristic methods are slower and cannot guarantee conver-
gence but often perform reasonably well over a broad range of
problem types encountered in practice.

These two types of approaches can be extended to include interac-
tivity in different ways. Interactive gradient-based methods generally
incorporate human input in the form of the initial design considered
since in nonconvex design spaces the local optimum found depends
on the starting position. This approach allows the designer to choose a
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Fig. 1. Aweightminimization problem for a seven-bar planar truss with two design variablesand the resulting design space. The global and local optimal solutions are shown, alongwith
isoperformance contours for 1.1, 1.2, and 1.3 times wopt, the optimal design's weight. For each contour, eight designs are highlighted, illustrating the aesthetic diversity of designs that
perform almost as well as the best solution.

Fig. 2. Two options for the design of the lateral and gravity structural system for an airport terminal: (a) a standard rigid frameand (b) a shaped rigid frame,which uses a similar amount of
material and creates a more architecturally expressive interior space.
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