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Support Vector Machines are methods that stem from Artificial Intelligence and attempt to learn the relation be-
tween data inputs and one ormultiple output values. However, the application of thesemethods has barely been
explored in a project control context. In this paper, a forecasting analysis is presented that compares the proposed
Support Vector Regressionmodel with the best performing Earned Value and Earned Schedulemethods. The pa-
rameters of the SVM are tuned using a cross-validation and grid search procedure, after which a large computa-
tional experiment is conducted. The results show that the Support Vector Machine Regression outperforms the
currently available forecasting methods. Additionally, a robustness experiment has been set up to investigate
the performance of the proposed method when the discrepancy between training and test set becomes larger.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Project scheduling first originated as a subdiscipline of Operations
Research with the goal of establishing start and finish times of activities
within a project network. These activities are subject to various types of
constraints, of which precedence and resource restrictions are themost
renowned, while optimizing a certain objective. While the construction
of a baseline schedule plays a vital role in the ultimate failure or success
of a project, its primary purpose consists of acting as a point of reference.
The assessment of a project's risk and the analysis of a project's perfor-
mance throughout its lifecycle are compared against this predictive
plan. Dynamic scheduling [20,25] refers to these three crucial phases
in a project's life cycle, namely baseline scheduling, schedule risk analy-
sis and project control. Ever since the inception of the well-known
Critical Path Method in the 1950s, the research community focused
heavily on project scheduling problems with various extensions. The
PERTmethodology turned the attention of academics towards the rela-
tion between the duration of a project and variability affecting activity
durations. The third component of dynamic scheduling is project con-
trol. Earned ValueManagement (EVM)was introduced as amethodolo-
gy to control a project's time and cost and aids a project manager in
keeping track of the execution of a project vis-à-vis the reference
point, provided by the baseline schedule. It surfaced in the 1960s thanks
to a project of the US Department of Defense. The reader is referred to
Fleming and Koppelman [11] for the fundamentals of EVM.

A popular project control topic was the search for accurate and reli-
able forecasting methods. Forecasting methods that provide a project
manager with a reliable estimate of the project's targets are an im-
portant asset in the project manager's toolbox. Depending on the
allowed deviation, forecasting estimatesmay serve as earlywarning sig-
nals, triggering actions to bring the project back on track. Even though
EVM allows for time and cost monitoring, initial research efforts were
mainly directed to cost forecasting. An overview of the different fore-
casting methods and their accuracy can be found in Christensen [6].
In the early 2000s, the dominance of the cost objective persisted (see
e.g. [10] who discuss a project's price tag) until the introduction of the
Earned Schedule concept by Lipke [17]. From this point onwards, the
time dimension received growing attention, which culminated in publi-
cations on time forecasting (see Vandevoorde and Vanhoucke, 2006).

Dynamic scheduling aims at the integration of its three components.
The first attempts at integrating schedule risk analysis and project
control were executed by Vanhoucke [23] and Vanhoucke [24]. These
research studies compare bottom-up (as found in schedule risk analy-
sis) and top-down (as found in EVM) project tracking approaches and
study their relation to a project network's topological structure. Fur-
thermore, activity sensitivity was incorporated in a dynamic corrective
action framework. In a recent publication, Elshaer [9] proposed an adap-
tation of one of the Earned Schedule forecasting methods using activity
sensitivity metrics. By bridging top-down and bottom-up metrics, he
was able to improve the forecasting accuracy of the Earned Schedule
method. These publications formed the primary motivation for this
paper's research. In order to construct sensitivitymeasures on the activ-
ity level, assumptions need to bemade about the range and distribution
of the activity durations. Using Monte Carlo simulations, various sensi-
tivity measures can be constructed that provide an idea about the
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contribution of an activity to the project's overall sensitivity. However,
each simulation run also yields top-down data that can be captured
using the EVM performance metrics. This wealth of historical top-
down data has great potential value in assisting project managers to
make more accurate predictions and will be used by our proposed
method. The contribution of this paper is threefold. First of all, we pro-
vide a clear framework of how a project manager can use the informa-
tion from Monte Carlo simulations to improve project forecasting. The
field of Artificial Intelligence, a research branch devoted to learning re-
lations between attributes to construct one ormultiple outputs, is ideal-
ly suited for this purpose. In this paper, we will focus on Support Vector
Machines, a well-known technique for classification and prediction.
Secondly, this paper intends to improve forecasting estimates using a
computational experiment on a large and topologically rich dataset. In
order to achieve this purpose, the forecasting accuracy is compared
based on a large amount of runs and based on different scenarios.
These scenarios provide valuable insights about when the proposed
Support Vector Machine approach yields the biggest advantage. Finally,
robustness checks are performed to illustrate the pitfalls of using histor-
ical data. This is particularly interesting since Artificial Intelligence is
susceptible to the well-known “garbage-in, garbage-out” principle.

The outline of this paper is as follows. Section 2 provides a short
overview of the underlying principles of Support Vector Regression. In
section 3, the research methodology is outlined. The methodology con-
sists of six steps, namely network generation,Monte Carlo simulation, at-
tributes, the division between training and test set, cross-validation and
grid search and finally, the testing phase. The settings of the computa-
tional experiment are delineated in Section 4 using the six methodolog-
ical steps. Section 5 presents the main results from the computational
experiment and is broken down as follows. First, Section 5.1 provides a
thorough discussion of the fine tuning process of the parameters of the
Support Vector Regression. A link between the simulation scenario, topo-
logical structure and forecast accuracy is established. Next, the relation
between accuracy and the project's point of completion is scrutinized. Fi-
nally, the limitations of our findings are discussed in Section 5.3 which
deals with a robustness check of the computational study. Section 6
draws conclusions and highlights future research avenues.

2. Support Vector Machine Regression

2.1. General theory

Support Vector Machines (SVMs) in their current form were devel-
oped at the AT&T Bell Laboratories and gained momentum with the
paper by Cortes and Vapnik [7]. Initial applications focused on binary
classification of test instances and pattern recognition.With the rapidly
increasing attention for SVMs, a number of introductory articles sur-
faced and constitute the foundation for this section [2,19,18]. In general,
SVMs employ a model to construct a decision surface by mapping the
input vectors into a high-dimensional (or infinite-dimensional) feature
space. Next, a linear regression is executed in the high-dimensional fea-
ture space. This mapping operation is necessary because most of the
time, the relation between a multidimensional input vector x and the
output y is unknown and very likely to be non-linear. Support Vector
Machine Regression (SVR) aims at finding a linear hyperplane, which
fits the multidimensional input vectors to output values. The outcome
is then used to predict future output values that are contained in a test
set. Let us define a set of data points P = (xi, ai), i = 1,…n with xi the
input vector of data point i, ai the actual value and n the number of
data points. For linear functions f, the hyperplane that is constructed
by the SVR is determined as follows:

f xð Þ ¼ wxþ b: ð1Þ

Notation-wise, Eq. (1) displays similarities to a linear regression
model. The predicted value, f(x), depends on a slopew and an intercept

b. In general, onewants to strike a balance between learning the relation
between inputs and outputs while maintaining a good generalization
behavior. An excessive focus on minimizing training errors may lead
to overfitting. A model with low complexity is limited with regard to
the decision boundary it can produce but is less likely to overfit. In
Cortes and Vapnik [7], it is shown that the probability of a test error de-
pends on two factors, namely the frequency of the training error and a
confidence interval, where both factors form a trade-off. The confidence
interval is related to the Vapnik–Chervonenkis dimension of the Sup-
port Vector Machine, which can be thought of as the complexity of the
learning model. Hence, improved generalization may be obtained by
improving the confidence interval at the expense of additional training
errors. The primary instrument to control this trade-off is C, which ex-
plains its importance. The balance between good training and generali-
zation behavior is reflected in Eq. (2), where R denotes the compound
risk caused by training errors and model complexity. Naturally, the
risk R needs to be kept as low as possible.

R ¼ C
n

Xn
i¼1

Lϵ ai; f xið Þð Þ þ 1
2

�����
�����w

�����
�����2: ð2Þ

Eq. (2) yields estimated values forw and b and consists of two main
parts. The first part, Cn∑

n
i¼1 Lϵ ai; f xið Þð Þ consists of the training or empir-

ical risk and is measured by the ϵ-insensitive loss function, Lϵ(a, y) (see
e.g. [29]). This function implies that the prediction error is ignored if the
difference between the predicted value f(x) and the actual value a is
smaller than ϵ. The ϵ-insensitive loss function is formally defined in
Eq. (3).

Lϵ a; yð Þ ¼ ja− f xð Þj−ϵ ja− f xð Þj ≥ϵ
0 otherwise

�
: ð3Þ

The second part of Eq. (2), 12jjwjj2, is the regularization term and is re-
lated to the complexity of themodel (see Cortes and Vapnik [7]). C con-
trols the trade-off between the regularization term and the training
accuracy. Large values of C imply that more weight is put on correctly
predicting training points, at the cost of a higher generalization error.

The problem of finding an optimal hyperplane is a convex opti-
mization problem. For non-linear relations between input vectors and
outputs, it is necessary to define a map, ϕ, that translates the training
points xi into a higher-dimensional feature space. The consequence is
thatw, after constructing a Lagrangean function fromEq. (1)will no lon-
ger be a function of xi but of ϕ(xi) and that the product ϕ(xi)ϕ(x) needs
to be calculated.We refer the reader to Smola and Schölkopf [19] for full
details about these observations. The functionϕ(xi)ϕ(x) is often defined
as K(xi, x) and is referred to as a kernel function. Kernel functions try to
achieve linear separability between training points in the higher-
dimensional feature space. Many kernel functions exist. In fact, any
function that satisfiesMercer's condition [30] can serve as a kernel func-
tion. An overview of frequently occurring kernel functions is given in
Table 1. γ, r and d are parameters that are kernel-specific. It is worth
noting that the Radial Basis Function kernel (RBF) is sometimes param-
eterized using 1

δ2
instead of using γ.

Table 1
Overview of common kernel functions.

Kernel name Formula

Linear xi
Tx

Polynomial (γxiTx + r)d

Radial basis e−γ jjxi−xjj2ð Þ
Sigmoidal tanh(γxiTx + r)

93M. Wauters, M. Vanhoucke / Automation in Construction 47 (2014) 92–106



Download English Version:

https://daneshyari.com/en/article/246441

Download Persian Version:

https://daneshyari.com/article/246441

Daneshyari.com

https://daneshyari.com/en/article/246441
https://daneshyari.com/article/246441
https://daneshyari.com

